Preoperative Three-Dimensional Planning of Screw Length is not Reliable in Osteotomies of the Humerus and Forearm

Document Type : RESEARCH PAPER

Authors

1 Amsterdam University Medical Center Amsterdam, the Netherlands

2 Department of Orthopeaedics, Noord West Ziekenhuisgroep, Alkmaar, the Netherlands

3 Department of Orthopaedics, Amphia Hospital, Breda, the Netherlands

4 Department of Orthopaedics, Amphia Hospital, Breda, the Netherlands - Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, the Netherlands

5 Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, the Netherlands

Abstract

Objectives: Pediatric upper extremity fractures are seen frequently and sometimes lead to malunion. Three-dimensional (3D) surgery planning is an innovative addition to surgical treatment for the correction of post-traumatic arm deformities. The detailed planning in three dimensions allows for optimization of correction and provides planning of the exact osteotomies which include the advised material for correction and fixation. However, no literature is available on the precision of this computerized sizing of implants and screws. This study aimed to investigate the differences between 3D planned and surgically implanted screws in patients with a corrective osteotomy of the arm.
Methods: Planned and implanted screw lengths were evaluated in patients who underwent a 3D planned corrective osteotomy of the humerus or forearm using patient-specific 3D printed drill- and sawblade guides. Postoperative information on implanted hardware was compared to the original planned screw lengths mentioned in the 3D planned surgery reports.
Results: Of the 159 included screws in 17 patients, 45% differed >1 mm from the planned length (P<0.001). Aberrant screws in the radius and ulna were often longer, while those in the humerus were often shorter. Most aberrant screws were seen in the proximity of the elbow joint.
Conclusion: This study showed that 3D-planned screws in corrective osteotomies of the humerus and forearm differ significantly from screw lengths used during surgery. This illustrates that surgeons should be cautious when performing osteotomies with 3D techniques and predefined screw sizes.
        Level of evidence: IV

Keywords

Main Subjects


  1. Otsuka NY, Kasser JR. Supracondylar Fractures of the Humerus in Children. J Am Acad Orthop Surg. 1997; 5(1):19-26. doi:10.5435/00124635-199701000-00003.
  2. Pogue DJ, Viegas SF, Patterson RM, et al. Effects of distal radius fracture malunion on wrist joint mechanics. J Hand Surg Am. 1990; 15(5):721-7. doi:10.1016/0363-5023(90)90143-f.
  3. van Bergen CJA. Pediatric Fractures Are Challenging from Head to Toe. Children (Basel). 2022; 9(5) doi: 10.3390/children9050678.
  4. Bergman E, Lempesis V, Jehpsson L, Rosengren BE, Karlsson MK. Childhood Distal Forearm Fracture Incidence in Malmö, Sweden 1950 to 2016. J Wrist Surg. 2021; 10(2):129-135. doi:10.1055/s-0040-1720965.
  5. Shenoy PM, Islam A, Puri R. Current Management of Paediatric Supracondylar Fractures of the Humerus. Cureus. 2020; 12(5):e8137. doi:10.7759/cureus.8137.
  6. Kawanishi Y, Miyake J, Kataoka T, et al. Does cubitus varus cause morphologic and alignment changes in the elbow joint? J Shoulder Elbow Surg. 2013; 22(7):915-23. doi:10.1016/j.jse.2013.01.024.
  7. Vashisht S, Banerjee S. Cubitus Varus. In: StatPearls. StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC; 2021.
  8. Bauer AS, Pham B, Lattanza LL. Surgical Correction of Cubitus Varus. J Hand Surg Am. 2016; 41(3):447-52. doi:10.1016/j.jhsa.2015.12.019.
  9. O'Driscoll SW, Spinner RJ, McKee MD, et al. Tardy posterolateral rotatory instability of the elbow due to cubitus varus. J Bone Joint Surg Am. 2001; 83(9):1358-69. doi:10.2106/00004623-200109000-00011.
  10. Fujioka H, Nakabayashi Y, Hirata S, Go G, Nishi S, Mizuno K. Analysis of tardy ulnar nerve palsy associated with cubitus varus deformity after a supracondylar fracture of the humerus: a report of four cases. J Orthop Trauma. 1995; 9(5):435-40. doi:10.1097/00005131-199505000-00013.
  11. Raney EM, Thielen Z, Gregory S, Sobralske M. Complications of supracondylar osteotomies for cubitus varus. J Pediatr Orthop. 2012;32(3):232-40. doi:10.1097/BPO.0b013e3182471d3f.
  12. Goetstouwers S, Kempink D, The B, Eygendaal D, van Oirschot B, van Bergen CJ. Three-dimensional printing in paediatric orthopaedic surgery. World J Orthop. 2022; 13(1):1-10. doi:10.5312/wjo.v13.i1.1.
  13. Oka K, Tanaka H, Okada K, et al. Three-Dimensional Corrective Osteotomy for Malunited Fractures of the Upper Extremity Using Patient-Matched Instruments: A Prospective, Multicenter, Open-Label, Single-Arm Trial. J Bone Joint Surg Am. 2019; 101(8):710-721. doi:10.2106/jbjs.18.00765.
  14. Bali K, Sudesh P, Krishnan V, Sharma A, Manoharan SR, Mootha AK. Modified step-cut osteotomy for post-traumatic cubitus varus: our experience with 14 children. Orthop Traumatol Surg Res. 2011; 97(7):741-9. doi:10.1016/j.otsr.2011.05.010.
  15. Hu X, Zhong M, Lou Y, et al. Clinical application of individualized 3D-printed navigation template to children with cubitus varus deformity. J Orthop Surg Res. 2020; 15(1):111. doi:10.1186/s13018-020-01615-8.
  16. Jia X, Chen Y, Qiang M, et al. Detection of Intra-Articular Screw Penetration of Proximal Humerus Fractures: Is Postoperative Computed Tomography the Necessary Imaging Modality? Acad Radiol. 2019; 26(2):257-263. doi:10.1016/j.acra.2017.10.021.
  17. Thorninger R, Madsen ML, Wæver D, Borris LC, Rölfing JHD. Complications of volar locking plating of distal radius fractures in 576 patients with 3.2 years follow-up. Injury. 2017; 48(6):1104-1109. doi:10.1016/j.injury.2017.03.008.
  18. Roberts JW, Grindel SI, Rebholz B, Wang M. Biomechanical evaluation of locking plate radial shaft fixation: unicortical locking fixation versus mixed bicortical and unicortical fixation in a sawbone model. J Hand Surg Am. 2007; 32(7):971-5. doi:10.1016/j.jhsa.2007.05.019.
  19. Shaw N, Erickson C, Bryant SJ, et al. Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. Tissue Eng Part B Rev. 2018; 24(2):85-97. doi:10.1089/ten.TEB.2017.0274.
  20. Rosseels W, Herteleer M, Sermon A, Nijs S, Hoekstra H. Corrective osteotomies using patient-specific 3D-printed guides: a critical appraisal. Eur J Trauma Emerg Surg.

 

2019; 45(2):299-307. doi:10.1007/s00068-018-0903-1.

  1. Murase T, Takeyasu Y, Oka K, Kataoka T, Tanaka H, Yoshikawa H. Three-Dimensional Corrective Osteotomy for Cubitus Varus Deformity with Use of Custom-Made Surgical Guides. JBJS Essent Surg Tech. 2014; 4(1):e6. doi:10.2106/jbjs.St.M.00044.
  2. Vlachopoulos L, Schweizer A, Graf M, Nagy L, Fürnstahl P. Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskelet Disord. 2015; 16:336. doi:10.1186/s12891-015-0793-x.
  3. Chen Y, Jia X, Qiang M, Zhang K, Chen S. Computer-Assisted Virtual Surgical Technology Versus Three-Dimensional Printing Technology in Preoperative Planning for Displaced Three and Four-Part Fractures of the Proximal End of the Humerus. J Bone Joint Surg Am. 2018; 100(22):1960-1968. doi:10.2106/jbjs.18.00477.
  4. Yoshii Y, Kusakabe T, Akita K, Tung WL, Ishii T. Reproducibility of three dimensional digital preoperative planning for the osteosynthesis of distal radius fractures. J Orthop Res. 2017; 35(12):2646-2651. doi:10.1002/jor.23578.
  5. Totoki Y, Yoshii Y, Kusakabe T, Akita K, Ishii T. Screw Length Optimization of a Volar Locking Plate Using Three Dimensional Preoperative Planning in Distal Radius Fractures. J Hand Surg Asian Pac Vol. 2018; 23(4):520-527. doi:10.1142/s2424835518500522.