Is a Complete Anatomical Fit of the Tomofix Plate Biomechanically Favorable? A Parametric Study Using the Finite Element Method

Document Type : RESEARCH PAPER

Authors

1 Department of Biomedical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran

2 Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

3 School of Mechanical Engineering, University of Tehran, Tehran, Iran

Abstract

Background: The opening wedge high tibial osteotomy (HTO) fixation using the Tomofix system is at the risk 
of mechanical failure due to unstable fixation, lateral hinge fracture, and hardware breakage. This study aimed to 
investigate the effect of the level of anatomical fit (LOF) of the plate on the failure mechanisms of fixation.
Methods: A finite element model of the HTO with a correction angle of 12 degrees was developed. The LOF of the 
TomoFix plate was changed parametrically by altering the curvature of the plate in the sagittal plane. The effect of 
the LOF on the fixation performance was studied in terms of the factor of safety (FOS) against failure mechanisms. 
The FOSs were found by 1) dividing the actual stiffness of the plate-bone construct by the minimum allowable one 
for unstable fixation, 2) dividing the compressive strength of the cortical bone by the actual maximum pressure at the 
lateral hinge for the lateral hinge fracture, and 3) the Soderberg criterion for fatigue fracture of the plate and screws.
Results: The increase of the LOF by applying a larger bent to the plate changed the fixation stiffness slightly. However, 
it reduced the lateral hinge pressure substantially (from 182 MPa to 71 MPa) and increased the maximum equivalent 
stresses in screws considerably (from 187 MPa to 258 MPa). Based on the FOS-LOF diagram, a gap smaller than 2.3 
mm was safe, with the highest biomechanical performance associated with a 0.5 mm gap size.
Conclusion: Although a high LOF is necessary for the Tomofix plate fixation to avoid mechanical failure, a gap size of 
0.5mm is favored biomechanically over complete anatomical fit. 
Level of evidence: V

Keywords


1. Lobenhoffer P. Importance of osteotomy around to the 
knee for medial gonarthritis. Indications, technique 
and results. Der Orthopade. 2014; 43(5):425-31.
2. Brouwer RW, Huizinga MR, Duivenvoorden T, 
van Raaij TM, Verhagen AP, Bierma‐Zeinstra SM, 
Verhaar JA. Cochrane Database Syst Rev. 2014; 
2014(12):CD004019.
3. Klinger HM, Lorenz F, Härer T. Open wedge tibial 
osteotomy by hemicallotasis for medial compartment 
osteoarthritis. Arch Orthop Trauma Surg. 2001; 
121(5):245-247. 
4. Ribeiro CH, Severino NR, Cury RD. Opening wedge 
high tibial osteotomy. The role of osteotomy in the 
correction of congenital and acquired disorders of the 
skeleton. 1st ed. Shanghai: InTech. 2012; 6:115-28.
5. Lee DC, Byun SJ. High tibial osteotomy. Knee Surg 
Relat Res. 2012; 24(2):61-69. 
6. Chahla J, Dean ChS, Mitchell JJ, Moatshe G, Cruz RS, 
LaPrade RF. Medial opening wedge proximal tibial 
osteotomy. Arthrosc Tech. 2016; 5(4): 919-928. 
7. Hartz C, Wischatta R, Klostermeier E, Paetzold M, 
Gerlach K, Pries F. Plate-related results of opening 
wedge high tibial osteotomy with a carbon fiber 
reinforced poly-ether-ether-ketone (CFPEEK) plate 
fixation: a retrospective case series of 346 knees. J 
Orthop Surg Res. 2019; 14(1):466. 
8. Brosset T, Pasquier G, Migaud H, Gougeon F. Opening 
wedge high tibial osteotomy performed without 
filling the defect but with locking plate fixation 
(TomoFix) and early weight-bearing: Prospective 
evaluation of bone union, precision and maintenance 
of correction in 51 cases. Orthop Traumatol Surg Res. 
2011; 97(7):705-711.
9. Cronier P, Pietu G, Dujardin C, Bigorre N, Ducellier 
F, Gerard R. The concept of locking plates. Orthop 
Traumatol Surg Res. 2010; 96:17-36. 
10.Brinkman JM, Lobenhoffer P, Agneskirchner JD, Staubli 
AE, Wymenga AB, van Heerwaarden RJ. Osteotomies 
around the knee: patient selection, stability of fixation 
and bone healing in high tibial osteotomies. J Bone 
Joint Surg. 2008; 90(12):1548-57. 
11.Yoo OS, Lee YS, Lee MC, Elazab A, Choi DG, Jang YW. 
Evaluation of the screw position and angle using a 
post-contoured plate in the open wedge high tibial 
osteotomy according to the correction degree and 
surgical technique. Clin Biomech. 2016; 35:111–115. 
12.Miller DL, Goswami T. A review of locking compression 
plate biomechanics and their advantages as internal 
fixators in fracture healing. Clin Biomech. 2007; 
22(10):1049-1062. 
13.Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green 
S, Hui AC. Biomechanical testing of the locking 
compression plate: when does the distance between 
bone and implant significantly reduce construct 
stability?. Injury. 2007; 38(3): 358-364. 
14.Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating 
constructs while retaining construct strength. J Bone 
Joint Surg. 2009; 91(8):1985-1994. 
15.Pochrzast M, Basiaga M, Marciniak J, Kaczmarek M. 
Biomechanical analysis of limited-contact plate used 
for osteosynthesis. Acta Bioeng Biomech. 2014; 16(1). 
16.Takeuchi R, Ishikawa H, Kumagai K, Yamaguchi Y, 
Chiba N, Akamatsu Y, et al. Fractures around the 
lateral cortical hinge after a medial opening-wedge 
high tibial osteotomy: a new classification of lateral 
hinge fracture. Arthrosc. 2012; 28(1):85–94. 
17.Martin R, Birmingham TB, Willits K, Litchfield R, Lebel 
ME, Giffin JR. Adverse event rates and classifications 
in medial opening wedge high tibial osteotomy. Am J 
Sports Med. 2014; 42(5):1118–1126. 
18.Nha KW, Jung WH, Koh YG, Shin YS. D-hole breakage 
of 2 angular stable locking plates for medial openingwedge high tibial osteotomy: analysis of results from 
12 cases. Medicine (Baltimore). 2019; 98(2):e14138. 
19.Koh YG, Lee JA, Lee HY, Chun HJ, Kim HJ, Kang KT. Design 
optimization of high tibial osteotomy plates using 
finite element analysis for improved biomechanical 
effect. J Orthop Surg Res. 2019; 14(1):219. 
20.Izaham RM, Kadir MR, Rashid AH, Hossain MG, 
Kamarul T. Finite element analysis of Puddu and 
Tomofix plate fixation for open wedge high tibial 
osteotomy. Injury. 2012; 43(6):898-902.
21.Watanabe K, Kamiya T, Suzuki D, Otsubo H, Teramoto 
A, Yamashita T. Biomechanical stability of open-wedge 
high tibial osteotomy: comparison of two locking 
plates. O J Orthop. 2014; 4:257-262. 
22.Luo CA, Hua SY, Lin SC, Chen CM, Tseng CS. Stress and 
stability comparison between different systems for 
high tibial osteotomies. BMC Musculoskelet Disord. 
2013; 14:110. 
23.Cotic M, Vogt S, Hinterwimmer S, Feucht MJ, SlottaHuspenina J, Schuster T, et al. A matched-pair 
comparison of two different locking plates for valgusproducing medial open-wedge high tibial osteotomy: 
peek-carbon composite plate versus titanium 
plate. Knee Surg Sports Traumatol Arthrosc. 2014; 
23(7):2914-2918. 
24.Weng PW, Chen CH, Luo CA, Sun JS, Tsuang YH, Cheng 
CK, et al. The effects of tibia profile, distraction angle, 
and knee load on wedge instability and hinge fracture: 
A finite element study. Med Eng Phys. 2017; 42:48-54.
25.Jang YW, Lim DH, Seo H, Lee MC, Lee OS, Lee YS. Role 
of an anatomically contoured plate and metal block 
for balanced stability between the implant and lateral 
hinge in open-wedge high tibial osteotomy. Orthop 
Trauma Surg. 2018; 138(7):911-920. 
26.Kaze AD, Maas S, Waldmann D, Zilian A, Dueck K, Pape 
D. Biomechanical properties of five different currently 
used implants for open-wedge high tibial osteotomy. J 
Exp Orthop. 2015; 2(1):14. 
27.Chen YN, Chang CW, Li CT, Chen CH, Chung CR, Chang CH, et al. Biomechanical investigation of the type and 
configuration of screws used in high tibial osteotomy 
with titanium locking plate and screw fixation. Orthop 
Surg Res. 2019; 14(1):35. 
28.Diffo Kaze A, Maas S, Belsey J, Hoffmann A, Pape D. 
Static and fatigue strength of a novel anatomically 
contoured implant compared to five current openwedge high tibial osteotomy plates. J Exp Orthop. 
2017; 4(1):1-3. 
29.MacLeod AR, Serrancoli G, Fregly BJ, Toms AD, Gill HS. 
The effect of plate design, bridging span, and fracture 
healing on the performance of high tibial osteotomy 
plates. Bone Joint Res. 2018; 7(12):639–649. 
30.Kang KT, Koh YG, Lee JA, Lee JJ, Kwon SK. Biomechanical 
effect of a lateral hinge fracture for a medial opening 
wedge high tibial osteotomy: finite element study. J 
Orthop Surg Res. 2020; 15(1):63. 
31.Yoo OS, Lee YS, Lee MC, Park JH, Kim JW, Sun DH. 
Morphologic analysis of the proximal tibia after open 
wedge high tibial osteotomy for proper plate fitting. 
BMC Musculoskelet Disord. 2016; 17:423. 
32.Hayatbakhsh Z, Farahmand F. Effects of plate 
contouring quality on the biomechanical performance 
of high tibial osteotomy fixation - A parametric finite 
element study. Proc Inst Mech Eng H. in press. 2022; 
236(3):356-66. 
33.Mortazavi J, Farahmand F, Behzadipour S, Yeganeh 
A, Aghighi M. A patient specific finite element 
simulation of intramedullary nailing to predict the 
displacement of the distal locking hole. Med Eng 
Phys. 2018; 55:34-42.
34.Sabzevari S, Ebrahimpour A, Roudi MK, Kachooei 
AR. High tibial osteotomy: a systematic review and 
current concept. Arch Bone Jt Surg. 2016; 4(3):204.
35.Perren SM, Cordey J. The concept of interfragmentary 
strain. Current concepts of internal fixation of 
fractures. 1980:63-77.
36.Reilly DT, Burstein AH. The elastic and ultimate 
properties of compact bone tissue. J Biomech. 1975; 
8(6):393–405. 
37.AZO Materials, Material properties of Titanium Alloys 
- Ti6Al4V Grade 5 [Internet]: From U.S. Titanium 
Industry Inc; 2002 [cited 2002 Jul 30]. Available from: 
https://www.azom.com/article.aspx?ArticleID=1547
38.Schmutz B, Wullschleger ME, Noser H, Barry M, Meek 
J, Schütz MA. Fit optimisation of a distal medial tibia 
plate. Comput Methods Biomech Biomed Eng. 2011; 
14(4):5. 
39.Abbaszadeh F, Rahmati S, Kheirollahi H, Farahmand 
F. Design for manufacturing of custom-made femoral 
stem using CT data and rapid prototyping technology. 
Int J Rapid Manuf. 2011; 2(1-2):76-91.
40.Gomari B, Farahmand F, Farkhondeh H. A rapid 
prototyping-based methodology for patient-specific 
contouring of osteotomy plates. Rapid Prototyp J. 
2019; 25(5):888–894. 
41.Giannatsis J, Dedoussis V. Additive fabrication 
technologies applied to medicine and health care: a 
review. Int J Adv Manuf Technol. 2009; 40:116-127. 
42.MacLeod A, Simpson AHRW, Pankaj P. Experimental 
and numerical investigation into the influence of 
loading conditions in biomechanical testing of locking 
plate fracture fixation devices. Bone Joint Res. 2018; 
7(1):111-120. 
43.Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, 
Månson JA, Pioletti DP. How plate positioning impacts 
the biomechanics of the open wedge tibial osteotomy; 
a finite element analysis. Comput Methods Biomech 
Biomed Engin. 2005; 8(5):307-13.
44.Bahraminasab M, Sahari BB, Edwards KL, Farahmand 
F, Honga TS, Naghibi H. Material tailoring of the 
femoral component in a total knee replacement to 
reduce the problem of aseptic loosening. Materials & 
Design. 2013; 52:441-451. 
45.Bahraminasab M, Sahari BB, Edwards KL, Farahmand 
F, Jahan A, Hong TS, et al. On the influence of shape 
and material used for the femoral component pegs in 
knee prostheses for reducing the problem of aseptic 
loosening. Materials & Design. 2014; 55:416-428