1. Yang K, Wei J, Wang C, Li Y. A study on in vitro and
in vivo bioactivity of nano hydroxyapatite/polymer
biocomposite. Chinese Science Bulletin. 2007;
52(2):267-71.
2. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T,
Nakamura T. Preparation and assessment of revised
simulated body fluids. Journal of Biomedical
Materials Research Part A: An Official Journal of
the Society for Biomaterials, the Japanese Society
for Biomaterials, and the Australian Society
for Biomaterials and the Korean Society for
Biomaterials. 2003; 65(2):188-95.
3. Voor MJ, Arts JJ, Klein SA, Walschot LH, Verdonschot
N, Buma P. Is hydroxyapatite cement an alternative
for allograft bone chips in bone grafting procedures?
A mechanical and histological study in a rabbit
cancellous bone defect model. Journal of Biomedical
Materials Research Part B: Applied Biomaterials: An
Official Journal of the Society for Biomaterials, the
Japanese Society for Biomaterials, and the Australian
Society for Biomaterials and the Korean Society for
Biomaterials. 2004; 71(2):398-407.
4. Salami MA, Kaveian F, Rafienia M, Saber-
Samandari S, Khandan A, Naeimi M. Electrospun
polycaprolactone/lignin-based nanocomposite as
a novel tissue scaffold for biomedical applications.
Journal of medical signals and sensors. 2017;
7(4):228.
5. Hulbert, SF, Klawitter, JJ, Leonard, B. Advanced
series in ceramics Volume 1: An introduction to
bioceramics. In Hench LL. and Wilson J. editor,
Singapore: World Scientific Pub; 1993.
6. Khandan A, Jazayeri H, Fahmy MD, Razavi M.
Hydrogels: Types, structure, properties, and
applications. Biomat Tiss Eng. 2017; 4(27):143-69.
7. Bohner M. Calcium orthophosphates in medicine:
from ceramics to calcium phosphate cements. Injury.
2000; 31:D37-47.
8. Polizu S, Savadogo O, Poulin P, Yahia LH. Applications
of carbon nanotubes-based biomaterials in
biomedical nanotechnology. Journal of nanoscience
and nanotechnology. 2006; 6(7):1883-904.
9. Do Nascimento C, Issa JP, de Oliveira RR, Iyomasa
MM, Siéssere S, Regalo SC, et al. Biomaterials applied
to the bone healing process. Int J Morphol. 2007;
25(4):839-46.
10. Brighton CT, Hunt RM. Early histologic and
ultrastructural changes in microvessels of periosteal
callus. Journal of orthopaedic trauma. 1997; 11(4):
244-53.
11. Heydary HA, Karamian E, Poorazizi E, Heydaripour
J, Khandan A. Electrospun of polymer/bioceramic
nanocomposite as a new soft tissue for biomedical
applications. Journal of Asian Ceramic Societies.
2015; 3(4):417-25.
12. Newman P, Minett A, Ellis-Behnke R, Zreiqat H.
Carbon nanotubes: their potential and pitfalls
for bone tissue regeneration and engineering.
Nanomedicine: Nanotechnology, biology and medicine.
2013; 9(8):1139-58.
13. Xiaoming L, Uo M, Akasaka T, Abe S, Watari F, Hong
G, et al. Maturation of osteoblast-like SaoS2 induced
by carbon nanotubes. Biomedical Materials (Bristol.
Online). 2009; 4.
14. Khandan A, Karamian E, Bonakdarchian M.
Mechanochemical synthesis evaluation of nanocrystalline
bone-derived bioceramic powder using for
bone tissue engineering. Dental Hypotheses. 2014;
5(4):155.
15. Stout DA, Webster TJ. Carbon nanotubes for stem cell
control. Materials Today. 2012; 15(7-8):312-8.
16. Elias KL, Price RL, Webster TJ. Enhanced functions
of osteoblasts on nanometer diameter carbon fibers.
Biomaterials. 2002; 23(15):3279-87.
17. Saber-Samandari S, Saber-Samandari S, Kiyazar S,
Aghazadeh J, Sadeghi A. In vitro evaluation for apatiteforming
ability of cellulose-based nanocomposite
scaffolds for bone tissue engineering. International
journal of biological macromolecules. 2016; 86:434-42.
18. Aghadavoudi F, Golestanian H, Tadi Beni Y.
Investigating the effects of resin crosslinking
ratio on mechanical properties of epoxyâbased
nanocomposites using molecular dynamics. Polymer
Composites. 2017; 38:E433-42.
19. Karbasi S, Zarei M, Foroughi MR. Effect of Multiwall
Carbon Nanotubes (MWNTs) on Structural and
Mechanical Properties of Poly (3-hydroxybutirate)
Electrospun Scaffolds for Tissue Engineering
Applications. Scientia Iranica. 2016; 23(6):3145-52.
20. Vatankhah E, Prabhakaran MP, Semnani D, Razavi S,
Morshed M, Ramakrishna S. Electrospun tecophilic/
gelatin nanofibers with potential for small diameter
blood vessel tissue engineering. Biopolymers. 2014;
101(12):1165-80.
21. Khandan A, Ozada N. Bredigite-Magnetite
(Ca7MgSi4O16-Fe3O4) nanoparticles: A study on
their magnetic properties. Journal of Alloys and
Compounds. 2017; 726:729-36.
22. Najafinezhad A, Abdellahi M, Saber-Samandari
S, Ghayour H, Khandan A. Hydroxyapatite-Mtype
strontium hexaferrite: a new composite for
hyperthermia applications. Journal of Alloys and
Compounds. 2018; 734:290-300.
23. Ghayour H, Abdellahi M, Ozada N, Jabbrzare S,
Khandan A. Hyperthermia application of zinc doped
nickel ferrite nanoparticles. Journal of Physics and
Chemistry of Solids. 2017; 111:464-72.
24. Ghayour H, Abdellahi M, Nejad MG, Khandan A,
Saber-Samandari S. Study of the effect of the Zn 2+
content on the anisotropy and specific absorption
rate of the cobalt ferrite: the application of Co 1−
x Zn x Fe 2 O 4 ferrite for magnetic hyperthermia.
Journal of the Australian Ceramic Society. 2018;
54(2):223-30.
25. Khandan A, Ozada N, Saber-Samandari S, Nejad
MG. On the mechanical and biological properties
of bredigite-magnetite (Ca7MgSi4O16-Fe3O4)
nanocomposite scaffolds. Ceramics International.
2018; 44(3):3141-8.
26. Abdellahi M, Najfinezhad A, Saber-Samanadari S,
Khandan A, Ghayour H. Zn and Zr co-doped M-type
strontium hexaferrite: Synthesis, characterization
and hyperthermia application. Chinese journal of
physics. 2018; 56(1):331-9.
27. Sahmani S, Khandan A, Saber-Samandari S, Aghdam MM.
Vibrations of beam-type implants made of 3D printed
bredigite-magnetite bio-nanocomposite scaffolds
under axial compression: Application, communication
and simulation. Ceramics International. 2018;
44(10):11282-91.
28. Sahmani S, Khandan A, Saber-Samandari S, Aghdam
MM. Nonlinear bending and instability analysis of
bioceramics composed with magnetite nanoparticles:
Fabrication, characterization, and simulation.
Ceramics International. 2018; 44(8):9540-9.
29. Abdellahi M, Karamian E, Najafinezhad A, Ranjabar
F, Chami A, Khandan A. Diopside-magnetite; A novel
nanocomposite for hyperthermia applications.
Journal of the mechanical behavior of biomedical
materials. 2018; 77:534-8.
30. Abdellahi M, Najafinezhad A, Ghayour H, Saber-
Samandari S, Khandan A. Preparing diopside
nanoparticle scaffolds via space holder method:
Simulation of the compressive strength and porosity.
Journal of the mechanical behavior of biomedical
materials. 2017; 72:171-81.
31. Monshi M, Esmaeili S, Kolooshani A, Moghadas
BK, Saber-Samandari S, Khandan A. A novel threedimensional
printing of electroconductive scaffolds
for bone cancer therapy application. Nanomedicine
Journal. 2020; 7(2):138-48.
32. Esmaeili S, Khandan A, Saber-Samandari S.
Mechanical performance of three-dimensional bionanocomposite
scaffolds designed with digital light
processing for biomedical applications. Iranian
Journal of Medical Physics. 2018; 15(Special Issue
12th. Iranian Congress of Medical Physics):328-.
33. Farazin A, Akbari Aghdam H, Motififard M,
Aghadavoudi F, Kordjamshidi A, Saber-Samandari S,
et al. A polycaprolactone bio-nanocomposite bone
substitute fabricated for femoral fracture approaches:
molecular dynamic and micromechanical investigation.
Journal of Nanoanalysis. 2019; 6(3):172-84.