1. Oskoei MA, Hu H. Myoelectric control systems—A
survey. Biomedical Signal Processing and Control.
2007;2(4):275-94.
2. Farina D, Jiang N, Rehbaum H, Holobar A, Graimann
B, Dietl H, et al. The extraction of neural information
from the surface EMG for the control of upper-limb
prostheses: emerging avenues and challenges. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering. 2014;22(4):797-809.
3. Ortiz-Catalan M, Håkansson B, Brånemark R. Realtime
and simultaneous control of artificial limbs based
on pattern recognition algorithms. IEEE Transactions
on Neural Systems and Rehabilitation Engineering.
2014;22(4):756-64.
4. Ameri A, Akhaee MA, Scheme E, Englehart K. Real-time,
simultaneous myoelectric control using a convolutional
neural network. PloS one. 2018;13(9):e0203835.
5. Atzori M, Cognolato M, Müller H. Deep learning
with convolutional neural networks applied
to electromyography data: A resource for the
classification of movements for prosthetic hands.
Frontiers in neurorobotics. 2016;10:9.
6. Ameri A. EMG-based wrist gesture recognition
using a convolutional neural network. Tehran
University Medical Journal TUMS Publications.
2019;77(7):434-9.
7. Geng W, Du Y, Jin W, Wei W, Hu Y, Li J. Gesture
recognition by instantaneous surface EMG images.
Scientific reports. 2016;6:36571.
8. Nielsen JL, Holmgaard S, Jiang N, Englehart KB, Farina
D, Parker PA. Simultaneous and proportional force
estimation for multifunction myoelectric prostheses
using mirrored bilateral training. IEEE Transactions
on Biomedical Engineering. 2011;58(3):681-8.
9. Muceli S, Farina D. Simultaneous and proportional
estimation of hand kinematics from EMG during
mirrored movements at multiple degrees-offreedom.
IEEE transactions on neural systems and
rehabilitation engineering. 2012;20(3):371-8.
10. Ameri A, Akhaee MA, Scheme E, Englehart K.
Regression convolutional neural network for
improved simultaneous EMG control. Journal of
neural engineering. 2019;16(3):036015.
11. Hahne JM, Schweisfurth MA, Koppe M, Farina D.
Simultaneous control of multiple functions of bionic
hand prostheses: Performance and robustness in end
users. Science Robotics. 2018;3(19):eaat3630.
12. Ameri A, Scheme EJ, Kamavuako EN, Englehart KB,
Parker PA. Real-time, simultaneous myoelectric
control using force and position-based training
paradigms. IEEE Transactions on Biomedical
Engineering. 2014;61(2):279-87.
13. Oda S. Motor control for bilateral muscular
contractions in humans. The Japanese journal of
physiology. 1997;47(6):487-98.
14. De Luca CJ, Erim Z. Common drive of motor units in
regulation of muscle force. Trends in neurosciences.
1994;17(7):299-305.
15. Hahne JM, Biessmann F, Jiang N, Rehbaum H,
Farina D, Meinecke F, et al. Linear and nonlinear
regression techniques for simultaneous and
proportional myoelectric control. IEEE Transactions
on Neural Systems and Rehabilitation Engineering.
2014;22(2):269-79.
16. Dwivedi SK, Ngeo JG, Shibata T. Extraction of Nonlinear
Synergies for Proportional and Simultaneous
Estimation of Finger Kinematics. IEEE Transactions
on Biomedical Engineering. 2020.
17. Blana D, Van Den Bogert AJ, Murray WM, Ganguly A,
Krasoulis A, Nazarpour K, et al. Model-based control
of individual finger movements for prosthetic hand
function. IEEE Transactions on Neural Systems and
Rehabilitation Engineering. 2020;28(3):612-20.
18. Hudgins B, Parker P, Scott RN. A new strategy for
multifunction myoelectric control. IEEE Transactions
on Biomedical Engineering. 1993;40(1):82-94.
19. Englehart K, Hudgins B. A robust, real-time control
scheme for multifunction myoelectric control. IEEE
transactions on biomedical engineering. 2003;
50(7):848-54.