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Abstract

Background: Myoelectric control is a method of decoding the motor intent from the electromyogram (EMG) data and 
using the estimated intent to control prostheses and robots. This work investigates estimation of the wrist kinematics 
from EMG signals using polynomial models. Due to their low complexity, polynomial models are potentially the perfect 
choice for EMG-kinematics modeling. 
  
Methods: Ten ablebodied individuals participated in this study, where the EMG signals from the forearm and the 
wrist kinematics from the contralateral wrist were measured during mirrored contractions. Two sets of EMG features 
were employed including the time domain (TD) set, and TD features along with autoregressive coefficients (TDAR). 
Polynomial models of order 1 to 4 were applied to map the EMG signals to the wrist motions. The performance was 
directly compared to that of a multilayer perceptron (MLP) neural network. 

Results: The estimation accuracy of the wrist kinematics improved with increasing the order of the model, but saturated 
at the 4th order. When using the TD set, the MLP significantly outperformed all polynomial models. However, when 
using the TDAR set, the polynomial models’ performance improved so that the 4th order model performance was not 
significantly different than that of the MLP in two DoFs, although it was lower than MLP in one DoF. 

Conclusion: These results indicate that polynomial models are not as effective as more complex models such as 
neural networks, in learning the highly nonlinear mapping between the EMG data and motion intent. However, using a 
sufficiently high number of various EMG features, would reduce the mapping nonlinearities, and thereby may increase 
the polynomial models’ performance to levels similar to those of complex black box models.    

Level of evidence: I
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Introduction

Decoding the motor information from 
electromyogram (EMG) signals and using the 
estimated intent to control prostheses, robots, and 

humanmachine interfaces are referred to as myoelectric 
control (1). In myoelectric prostheses, the motion 
intention of the missing limb, is estimated from the EMG 
signals of the residual muscles (2). Because the control 
mechanism of myoelectric prostheses is by thinking of an 
intended movement, similar to that of an intact limb, it is 

often said that myoelectric prostheses are controlled by 
thought. In order to control more than one movement, 
pattern recognition methods are necessary where a 
classification or regression model is deployed to estimate 
the motion intent from the EMG signals. One of the 
regression-based strategies is to map the EMG signals to 
the limb kinematics (3-12). However, this approach is not 
applicable to amputees, as it is not possible to measure 
an absent limb motions. To account for this issue, the 
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1 were performed. Each trial was 24 s in duration and 
involved 4 repetitions of the following cycle: 1 s of initial 
no-motion (rest position), 1 s of moving to a maximum 
comfortable angle in the corresponding DoF(s), 2 s of 
maintaining the maximum angle, 1 s of returning to no-
motion, and 1 s of keeping no-motion.      

Data Processing 
The EMG signals were bandpass filtered between 10-

450 Hz using a 3rd order Butterworth filter. The wrist 
joint angles in each DoF were computed from the marker 
location data and were lowpass filtered at 1 Hz using a 
3rd order Butterworth. The EMG data were segmented 
into 200 ms windows with 50 ms increments. The 
average computed wrist angle across each EMG window 
was set as the corresponding angle for each EMG window. 
From each EMG window, the TD feature set including 
the mean absolute value (MAV), zero crossings (ZC), 
waveform length (WL), and slope sign changes (SSC) 
were extracted (18). Moreover, to investigate the effect 
of inclusion of additional features, a second feature set 
was tested which comprised the TD set as well as the root 
mean square (RMS), and the 6th order autoregressive 
(AR) model coefficients. This feature set is denoted as 
TDAR. The total number of features for all eight channels 
were 32 TD and 88 TDAR features. For each subject and 
each DoF, polynomial models of order 1 to 4 and also an 
MLP were trained to model the relationship between 
the EMG features and the corresponding wrist angles. 
The MLP parameters were determined empirically; one 
hidden layer with five neurons was used, where the 
hidden and output layers had tan-sigmoid and linear 
activation functions, respectively. Levenberg-Marquardt 
backpropagation was used as the training algorithm. 

movements can be measured form the opposite sound 
limb during mirrored contractions (9). This method is 
justified by studies that have shown high correlation 
between the left and right limbs during mirrored 
contractions (13, 14). With this approach, the EMG data 
from the residual muscles are mapped to the opposite 
sound limb motions during mirrored contractions. This 
method, however, is limited to unilateral amputees.

In regression-based methods, each independent 
movement direction around a joint is called a degree 
of freedom (DoF). The goal is to estimate the motion 
intent in several DoFs simultaneously, to provide a 
more natural intuitive control. For example, wrist 
movements involve simultaneous motions in three 
DoFs of flexion-extension, abduction-adduction, and 
pronationsupination. A natural prosthetic control would 
require simultaneous control of these DoFs. Several 
regression models have been proposed to map the EMG 
signals to the limb kinematics (9, 15-17). This study aims 
to evaluate the efficacy of polynomial models, as the 
simplest nonlinear models, in learning the nonlinearity 
of EMG-wrist kinematics relationship. Due to the low 
complexity of polynomial models, they allow fast training 
and computation, potentially making them a perfect 
choice for EMG-based motion intent estimation. The 
performance is directly compared to that of a complex 
black box model, i.e. a multilayer perceptron (MLP) 
neural network.

Materials and Methods
Data Collection

Ten ablebodied subjects (ages: 24-39, all righthanded) 
took part in this experiment. The protocol was approved 
by the ethics board of the University. The subjects sat in a 
chair with forearms secured to armrests and palms facing 
inward in a resting position. Six reflective ball shaped 
markers were attached to the skin on bony landmarks 
of the left hand and forearm as shown in Figure 1. The 
markers positions were captured by a Vicon 512 system 
with 8 infrared video cameras at 60 Hz. Eight bipolar 
EMG sensors (Delsys Inc.) were attached equally spaced 
around the right forearm, proximal to the elbow. The EMG 
data were recorded at 1 KHz via a 16 bit A/D converter. 
The Vicon system was synchronized with the EMG system 
through a digital trigger. 

This experiment involved wrist motions in three DoFs. 
Fourteen trials corresponding to fourteen wrist motions 
(6 individual and 8 combined motions) listed in Table 

Figure 1. Six ball shaped markers were placed on bony landmarks 
of the left upper limb.

Table 1. The experiment involved 14 trials corresponding to 14 
contractions

# Contraction

1 Flexion

2 Extension

3 Abduction

4 Adduction

5 Pronation

6 Supination

7 Simultaneous Flexion and Pronation

8 Simultaneous Flexion and Supination

9 Simultaneous Extension and Pronation

10 Simultaneous Extension and Supination

11 Simultaneous Abduction and Pronation

12 Simultaneous Abduction and Supination

13 Simultaneous Adduction and Pronation

14 Simultaneous Adduction and Supination
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The estimated wrist angles were lowpass filtered at 
1 Hz to match the frequency content of the measured 
angle data. Four-fold cross validation was conducted 
where in each trial three repetitions were included in the 
training set and one repetition was used in the test set. 
The coefficient of determination (R2) (9) was computed 
to quantify the wrist angle estimation accuracy in each 
DoF. For a polynomial model of order N, the wrist angle 
in each DoF was estimated as in Eq 1. 

                                                                (1)

where f is the estimated angle, and for each i, A
i is a 

constant row vector with length M (M is the number of 
total features, for TD: 8×4=32, and for TDAR: 8×11=88), 
X is the EMG features column vector with length M and 

a0 is a constant. The coefficient constants Ai and a0 were 
determined using an iterative least squares approach in 
the training phase.   

Statistics
The estimation accuracies (R2) were compared between 

the MLP and each polynomial model using paired samples 
ttest. The significance level was set to 0.05. 

Results
In order to better understand the EMG-kinematics 

relationship, an illustration is provided in Figure 2, which 
shows the EMG signal recorded from a channel over the 
extensor digitorum muscle during the extension trial for 
a representative subject, along with the measured wrist 
angle in the flexionextension DoF. For this EMG signal 
during the same period, the TD features are plotted in 
Figure 3.    

Figure 2. The EMG signal recorded from a channel over the extensor digitorum muscle along 
with the measured wrist angle in the flexion extension DoF, for a representative subject.

Figure 3. The TD features of the EMG signal of Figure 2 is plotted for the same period.   
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The wrist angle estimation accuracy (R2) at each DoF, 
averaged across all subjects are plotted in Figure 4 for the 
polynomial models of order 1 to 4, and the MLP, when 
using the TD feature set. Paired samples ttests showed 
that at each DoF, the MLP significantly outperformed 
every polynomial model (P<0.05).   

The wrist angle estimation accuracy (R2) at each DoF, 
averaged across all subjects are plotted in Figure 5 for the 
4th order polynomial model and the MLP, for the TD and 
TDAR feature sets (denoted as 4thTD, 4thTDAR, MLPTD, 
and MLPTDAR, respectively). Moreover, the results for 

the TD and TDAR feature sets are plotted in Figure 6 for 
individual subjects for the 4th order polynomial model. 
As indicated in Figure 5, the TDAR feature set increased 
the estimation accuracy of the 4th order polynomial, but 
did not improve the MLP performance. The estimation 
accuracy of the 4th order polynomial when using the 
TDAR feature set, were compared to that of the MLP 
model, using paired samples t-test, for each DoF. MLP-TD 
was used for comparison, because using the TDAR set did 
not enhance the MLP performance. The results indicated 
that no significant difference (P>0.05) was found between 

Figure 4. The wrist angle estimation accuracies (R2) at each DoF, averaged across all subjects are shown 
with standard error (N=10) for the polynomial models of order 1 to 4 and MLP, with the TD feature set.

Figure 5. The wrist angle estimation accuracies (R2) at each DoF, averaged across all subjects are 
shown with standard error (N=10) for the 4th order polynomial model and MLP, with the TD and 
TDAR feature sets. 
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Figure 6. The wrist angle estimation accuracies (R2) at each DoF, for the 4th order 
polynomial model, with the TD and TDAR feature sets, for individual subjects. The 
top, middle, and bottom figures are for flexion-extension, abduction-adduction, 
and pronation-supination DoFs, respectively.  

4th TDAR and MLPTD, in the abductionadduction and 
pronationsupination DoFs, whereas MLPTD outperformed 
4th TDAR in the flexionextension DoF (P≈0.009).

Discussion
This work investigated the estimation of wrist motions 

from the EMG data of the contralateral forearm during 
dynamic individual and combined motions. The results 
were promising as a high performance was obtained for 
EMGkinematics mapping. Commercial prostheses use 
traditional direct control which only allows control of 
one DoF. However, the regressionbased systems in this 
study provide simultaneous control of multiple DoFs 
and therefore can significantly improve the control 
naturalness. The high estimation accuracy of the wrist 
angle achieved in this work support the high correlation 
between the left and right upper limbs during mirrored 
contractions.  

The results reveal that the polynomial models 
performance improve with increasing the model 
order until it saturates at the 4th order. The first order 
polynomial is a linear model, and demonstrated a 
significantly lower performance compared to higher 

order models. This clearly shows that the motion intent 
relationship with EMG features is nonlinear. Based on 
the results, this nonlinearity is more pronounced in 
pronationsupination [Figure 4]. This may be because 
the muscles responsible for pronationsupination are 
deeper and may slide under other superficial muscles 
during dynamic contractions. This makes it more 
difficult to measure the EMG signals from these muscles 
by surface sensors. 

Increasing the order of a polynomial model increases 
its capacity to capture nonlinearity. Hence, the 
performance improves with increasing the model order, 
but it saturates at the 4th order. Nevertheless, the MLP 
significantly outperformed the 4th order model, when 
using the TD feature set, indicating that complex black 
box models can be more efficient in modeling the 
nonlinear relationship between the EMG features and 
wrist angle. This demonstrates the limited capacity of 
polynomial systems in modeling the highly nonlinear 
EMGkinematics relationship. However, when using 
the TDAR feature set, the estimation accuracy of the 
polynomial models improved [Figure 5]. This is because 
inclusion of the additional features, reduced the 
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