Investigating the Effect of Center of Rotation of Angulation (CORA) Location on Varus Knee Joint Mechanics

Document Type : RESEARCH PAPER

Authors

School of Mechanical Engineering, University of Tehran, Tehran, Iran

10.22038/abjs.2025.86203.3924

Abstract

Objectives: Malalignment of the lower limb, such as varus deformity, can impair function by altering joint biomechanics and gait. However, the effect of the center of rotation of angulation (CORA) location on joint mechanics in varus deformity remains unclear.
Methods: This study proposed an approach to enhance the accuracy and efficiency of joint kinetics and kinematics estimation during gait by incorporating precise CORA positioning along the femur. Simulations were performed using inverse kinematics and dynamics for a 10° varus deformity. The deformities were modeled with CORA located at fractions ranging from 1/6 to 5/6 of femoral length (measured from the hip to the knee joint), and were compared with a baseline representing normal lower-limb alignment.
Results: The findings indicated that varus deformity had a minimal effect on the subtalar angle but substantially altered the subtalar moment during stance. CORA placement near the hip joint increased both ankle plantar-/dorsiflexion and knee flexion/extension angles. Proximal CORA positioning also influenced joint reaction forces, producing higher forces at the ankle and reduced forces at the hip. While hip abduction/adduction moments showed only minor changes, hip rotation moments varied considerably across CORA locations, particularly during stance.
Conclusion: Incorporating CORA into deformity modeling enables more accurate simulation of pathological alignment, providing detailed insights into joint kinetics and kinematics. Such information can help surgeons better understand patient-specific conditions and develop more precise surgical plans.
        Level of evidence: V

Keywords

Main Subjects


  1. Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity Planning for Frontal and Sagittal Plane Corrective Osteotomies. Orthop Clin North Am. 1994;25(3):425-465. doi:10.1016/S0030-5898(20)31927-1.
  2. Heller MO, Taylor WR, Perka C, Duda GN. The influence of alignment on the musculoskeletal loading conditions at the knee. Langenbeck’s Arch Surg. 2003;388(5):291-297. doi:10.1007/s00423-003-0406-2.
  3. Khani Y, Bisadi A, Salmani A, et al. Can Artificial Intelligence Reliably and Accurately Measure Lower Limb Alignment: A Systematic Review and Meta-Analysis. Arch Bone Jt Surg. 2025;13(7):383-394. doi:10.22038/abjs.2025.84846.3864.
  4. Shah K, Solan M, Dawe E. The gait cycle and its variations with disease and injury. Orthop Trauma. 2020;34(3):153-160. doi:10.1016/j.mporth.2020.03.009.
  5. Deshpande BR, Katz JN, Solomon DH, et al. Number of Persons With Symptomatic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care Res (Hoboken). 2016;68(12):1743-1750. doi:10.1002/ACR.22897.
  6. Shima H, Walter H, Gholamreza R. Alteration of Lower Limb Kinematics and Kinetics due to Bilateral Triple Arthrodesis. Arch Bone Jt Surg. 2023;11:711-716. doi:10.22038/abjs.2023.68704.3246.
  7. Dehcheshmeh FG, Nourbakhsh MR, Farsani ZA, Bazrgari B, Arab AM. Kinematic Analysis of Pelvic and Lower Limb Joints during Stand-to-sit Movement in Individuals with Chronic Low Back Pain: A cross-sectional study. Arch Bone Jt Surg. 2024;12(8):587-596. doi:10.22038/ABJS.2024.76840.3551.
  8. Sherafat Vaziri A, Ahmadzadeh H, Hosseinzadeh N. How to Perform an Accurate and Safe Medial Open Wedge High Tibial Osteotomy; A Technical Note. Arch Bone Jt Surg. 2025;13(6):378-382. doi:10.22038/abjs.2025.81222.3703.
  9. Whatling GM, Biggs PR, Elson DW, Metcalfe A, Wilson C, Holt C. High tibial osteotomy results in improved frontal plane knee moments, gait patterns and patient-reported outcomes. Knee Surgery, Sport Traumatol Arthrosc. 2020;28(9):2872-2882. doi:10.1007/s00167-019-05644-7.
  10. Sherafatvaziri A, Salkhori O, Razi M, et al. Practice Trends in Primary Total Knee Arthroplasty among Members of the Iranian Society of Knee Surgery, Arthroscopy, and Sports Traumatology. Arch Bone Jt Surg. 2025;13(6):359-366. doi:10.22038/ABJS.2025.85348.3889.
  11. Caldwell LK, Laubach LL, Barrios JA. Effect of specific gait modifications on medial knee loading, metabolic cost and perception of task difficulty. Clin Biomech. 2013;28(6):649-654. doi:10.1016/j.clinbiomech.2013.05.012.
  12. Killen BA, Brito da Luz S, Lloyd DG, et al. Automated creation and tuning of personalised muscle paths for OpenSim musculoskeletal models of the knee joint. Biomech Model Mechanobiol. 2021;20(2):521-533. doi:10.1007/S10237-020-01398-1.
  13. Smale KB, Conconi M, Sancisi N, et al. Effect of implementing magnetic resonance imaging for patient-specific OpenSim models on lower-body kinematics and knee ligament lengths. J Biomech. 2019;83:9-15. doi:10.1016/J.JBIOMECH.2018.11.016.
  14. Tabeiy S, Karimpour M, Shirvani A, Vaziri AS. The Influence of Knee Varus Deformity on the Kinematic and Dynamic Characteristics of Musculoskeletal Models During Gait. Comput Methods Biomech Biomed Engin. 2025 Apr 9:1-8. doi: 10.1080/10255842.2025.2487817.
  15. Paley D. Principles of Deformity Correction. 3rd ed. (Herzenberg m JE, ed.). Springer-Verlag Berlin Heidelberg New York; 2005.
  16. Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940-1950. doi:10.1109/TBME.2007.901024.
  17. Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Trans Biomed Eng. 1990;37(8):757-767. doi:10.1109/10.102791.
  18. Rostamian R, Shariat-Panahi M, Karimpour M, Kashani HG. Compensatory gait deviations during single-limb stance in patients with excessive tibial torsion. In2023 30th National and 8th International Iranian Conference on Biomedical Engineering (ICBME) 2023 (pp. 244-248). IEEE.
  19. Hicks J. Tutorial 3 - Scaling, Inverse Kinematics, and Inverse Dynamics. Availabla at: https://opensimconfluence.atlassian.net/wiki/spaces/OpenSim/pages/53089741/Tutorial+3+-+Scaling+Inverse+Kinematics+and+Inverse+Dynamics. Accessed May 11, 2024.
  20. Kainz H, Mindler GT, Kranzl A. Influence of femoral anteversion angle and neck-shaft angle on muscle forces and joint loading during walking. PLoS One. 2023;18(10):e0291458. doi: 10.1371/journal.pone.0291458.
  21. OpenSim - Event Details. Avaailable at: https://simtk.org/projects/jointreaction. Accessed May 11, 2024.
  22. Falisse A, Van Rossom S, Gijsbers J, et al. OpenSim versus human body model: a comparison study for the lower limbs during gait. J Appl Biomech. 2018;34(6):496-502. doi: 10.1123/jab.2017-0156.
  23. Rostamian R, Panahi MS, Karimpour M, Nokiani AA. Automatic assessment of lower limb deformities using high ‑ resolution X ‑ ray images. BMC Musculoskelet Disord. 2025;26(1):521. doi:10.1186/s12891-025-08784-9.
  24. SimTK. Knee Varus/Valgus Malalignment Tool for OpenSim Models. Available at: https://simtk.org/projects/var-val-tool. Accessed April 25, 2025.
  25. Davis J. johnjdavisiv/opensim-ik-errors: Calculate errors for each marker when doing inverse kinematics in OpenSim. Available at: https://github.com/johnjdavisiv/opensim-ik-errors. Accessed April 25, 2025.
  26. De Pieri E, Nüesch C, Pagenstert G, Viehweger E, Egloff C, Mündermann A. High tibial osteotomy effectively redistributes compressive knee loads during walking. J Orthop Res. 2023;41(3):591-600. doi: 10.1002/jor.25403.
  27. Latifpoor M, Sarzaeem MM, Amoozadeh Omrani F, Raissi Dehkordi S. Comparison of Functional Outcomes of Two Knee Arthroplasty Techniques (Total Knee Arthroplasty and Unicompartmental Knee Arthroplasty) for the Treatment of

 

       Osteoarthritis, simultaneously done in the Same Patients. Arch Bone Jt Surg. 2024;12(10):695-700. doi:10.22038/abjs.2024.75050.3469.

  1. Modenese L, Montefiori E, Wang A, Wesarg S, Viceconti M, Mazzà C. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. J Biomech. 2018;73:108-118. doi:10.1016/J.JBIOMECH.2018.03.039.
  2. Valente G, Crimi G, Vanella N, Schileo E, Taddei F. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim. Comput Methods Programs Biomed. 2017;152:85-92. doi:10.1016/J.CMPB.2017.09.012.
  3. Rostamian R, Shariat Panahi M, Karimpour M, Kashani HG, Abi A. A deep learning-based multi-view approach to automatic 3D landmarking and deformity assessment of lower limb. Sci Rep. 2025;15(1):1-12. doi:10.1038/s41598-024-84387-z.
  4. Ahrend MD, Baumgartner H, Ihle C, Histing T, Schröter S, Finger F. Influence of axial limb rotation on radiographic lower limb alignment: a systematic review. Arch Orthop Trauma Surg. 2022;142(11):3349-3366. doi:10.1007/S00402-021-04163-W/FIGURES/4.
  5. Di Y, Wu G, Zhang G, Guo X, Li L. Observation on Curative Effect of Minimally Invasive Osteotomy Combined with Ilizarov Technique in the Treatment of Knee Osteoarthritis with Varus Deformity. Bone Arthrosurgery Sci. 2023;1(2):7-14. doi:10.26689/BAS.V1I2.5250.
  6. Wheatley BB, Chaclas NA, Seeley MA. Patellofemoral Joint Load and Knee Abduction/Adduction Moment are Sensitive to Variations in Femoral Version and Individual Muscle Forces. J Orthop Res. 2023;41(3):570-582. doi:10.1002/jor.25396.
  7. Besier TF, Pal S, Draper CE, et al. The Role of Cartilage Stress in Patellofemoral Pain. Med Sci Sports Exerc. 2015;47(11):2416. doi:10.1249/MSS.0000000000000685.