Predictive Radiographic Factors for Soft Tissue Release and Distal Femoral Cut Angle for Appropriate Biomechanics in Total Knee Arthroplasty Predictive Radiographic Factors for Soft Tissue Release and Distal Femoral Cut Angle for Appropriate Biomechanics in Total Knee Arthroplasty

Document Type : RESEARCH PAPER

Authors

1 Center for Orthopedic Trans-disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran

2 Department of Orthopedic Surgery, Denver Health Medical Center, Denver, USA

3 Department of Orthopedics and Trauma Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

4 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

10.22038/abjs.2025.80846.3689

Abstract

Objectives: Total knee arthroplasty (TKA) relies on precise soft tissue releases and bone cuts for balanced weight distribution. Challenges include the lack of predictors to guide the extent and timing of soft tissue release. This study examines the relationship between radiographic parameters and the distal femur valgus cut angle (VCA), and their correlation with the medial soft tissue release (MSTR) stage in TKA patients. The goal is to identify predictors that aid in achieving optimal biomechanics and tissue balance.
Methods: In this prospective cohort study, we examined preoperative standard lower limb three-joint views of 62 limbs (57 patients) to explore the relationship between radiographic parameters, the stage of MSTR, and VCA. Univariate and multivariate linear regression analyses, along with various statistical tools, were used to identify relationships and determine cut-off values.
Results: A notable positive correlation was observed between VCA and medial hip offset (MHO), as well as between VCA and femoral length (FL), with both correlations yielding P < .001. Patients with shorter femurs and an MHO greater than 4.35 cm required a distal femoral cut angle of 6 degrees or more, while those with longer femurs and an MHO less than 4.35 cm needed an angle of less than 6 degrees (sensitivity: 83%, specificity: 80%). Additionally, the joint line congruency angle (JLCA), varus angle (VA), and lateral distal femoral angle (LDFA) showed significant correlations with the stage of MSTR. Among these variables, the VA emerged as the most accurate predictor, with a sensitivity of 91.7% and a specificity of 100%.
Conclusion: Increasing the LDFA to above 93.5°, JLCA to above 7.5°, and the VA to above 19° would heighten the probability of requiring extensive MSTR. Additionally, MHO and FL are the most crucial predictive factors for determining the VCA.
        Level of evidence: II

Keywords

Main Subjects


  1. Thienpont E, Schwab PE, Cornu O, Bellemans J, Victor J. Bone morphotypes of the varus and valgus knee. Arch Orthop Trauma Surg. 2017; 137(3):393-400. doi:10.1007/s00402-017-2626-x.
  2. Rossi R, Cottino U, Bruzzone M, Dettoni F, Bonasia DE, Rosso F. Total knee arthroplasty in the varus knee: tips and tricks. Int Orthop. 2019; 43(1):151-158. doi:10.1007/s00264-018-4116-3.
  3. Basanagoudar PL, Satishkumar BRJ, Pattabiraman K, Kamath D, Ranganadham AV. Distal Femoral Valgus Resection Angle in Conventional Total Knee Arthroplasty - A CT Scanogram Study. Arch Bone Jt Surg. 2022; 10(1):e67615. doi:10.22038/abjs.2022.67615.3216.
  4. Hunt NC, Ghosh KM, Athwal KK, Longstaff LM, Amis AA, Deehan DJ. Lack of evidence to support present medial release methods in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2014; 22(12):3100-12. doi:10.1007/s00167-014-3148-5.
  5. Aunan E, Rohrl SM. No detrimental effect of ligament balancing on functional outcome after total knee arthroplasty: a prospective cohort study on 129 mechanically aligned knees with 3 years' follow-up. Acta Orthop. 2018; 89(5):548-554. doi:10.1080/17453674.2018.1485283.
  6. Stahelin T, Kessler O, Pfirrmann C, Jacob HA, Romero J. Fluoroscopically assisted stress radiography for varus-valgus stability assessment in flexion after total knee arthroplasty. J Arthroplasty. 2003; 18(4):513-5. doi:10.1016/s0883-5403(03)00060-3.
  7. Oliver JH, Coughlin LP. Objective knee evaluation using the Genucom Knee Analysis System. Clinical implications. Am J Sports Med. 1987; 15(6):571-8. doi:10.1177/036354658701500609.
  8. Kohn MD, Sassoon AA, Fernando ND. Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res. 2016; 474(8):1886-93. doi:10.1007/s11999-016-4732-4.
  9. Mose K. Methods of measuring in Legg-Calve-Perthes disease with special regard to the prognosis. Clin Orthop Relat Res. 1980; 150(150):103-9.
  10. Bardakos N, Cil A, Thompson B, Stocks G. Mechanical axis cannot be restored in total knee arthroplasty with a fixed valgus resection angle: a radiographic study. J Arthroplasty. 2007; 22(6 Suppl 2):85-9. doi:10.1016/j.arth.2007.04.018.
  11. Chen W, Nagamine R, Kondo K, Todo M. Effect of medial soft-tissue releases during posterior-stabilised total knee arthroplasty. J Orthop Surg (Hong Kong). 2011; 19(2):230-3. doi:10.1177/230949901101900221.
  12. Heesterbeek PJC, Haffner N, Wymenga AB, Stifter J, Ritschl P. Patient-related factors influence stiffness of the soft tissue complex during intraoperative gap balancing in cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017; 25(9):2760-2768. doi:10.1007/s00167-015-3694-5.
  13. Jang SJ, Kunze KN, Casey JC, et al. Variability of the femoral mechanical-anatomical axis angle and its implications in primary and revision total knee arthroplasty. Bone Jt Open. 2024; 5(2):101-108. doi:10.1302/2633-1462.52.BJO-2023-0056.R1.
  14. Deakin AH, Basanagoudar PL, Nunag P, Johnston AT, Sarungi M. Natural distribution of the femoral mechanical-anatomical angle in an osteoarthritic population and its relevance to total knee arthroplasty. Knee. 2012; 19(2):120-3. doi:10.1016/j.knee.2011.02.001.
  15. Zhou XH, Obuchowski NA, McClish DK,eds. Statistical methods in diagnostic medicine.1st ed. John Wiley & Sons; 2014.
  16. Meloni MC, Hoedemaeker RW, Violante B, Mazzola C. Soft tissue balancing in total knee arthroplasty. Joints. 2014; 2(1):37-40.
  17. Walker PS, Heller Y, Cleary DJ, Yildirim G. Preclinical evaluation method for total knees designed to restore normal knee mechanics. J Arthroplasty. 2011; 26(1):152-60. doi:10.1016/j.arth.2009.11.017.
  18. Daher M, Estephan M, Ghou A, Tarchichi J, Mansour J. Hip Strengthening After Total Knee Arthroplasty: A Meta-analysis and Systematic Review. Arch Bone Jt Surg. 2024; 12(1):e76202. doi:10.22038/abjs.2024.76202.3520.
  19. Goudie S, Deep K. Collateral soft tissue release in primary total knee replacement. Comput Aided Surg. 2014; 19(1-3):29-33. doi:10.3109/10929088.2014.889212.
  20. Amiri S, Mirahmadi A, Parvandi A, et al. Management of Iatrogenic Medial Collateral Ligament Injury in Primary Total Knee Arthroplasty: A Systematic Review. Arch Bone Jt Surg. 2023; 11(1):e73563. doi:10.22038/abjs.2023.73563.3406.
  21. Hakki S, Coleman S, Saleh K, Bilotta VJ, Hakki A. Navigational predictors in determining the necessity for collateral ligament release in total knee replacement. J Bone Joint Surg Br. 2009; 91(9):1178-82. doi:10.1302/0301-620X.91B9.22043.
  22. Schnurr C, Stolzenberg I, Nessler J, Eysel P, Konig P. Navigierte Implantation weichteilbalancierter Knieendoprothesen. Operative Orthopädie und Traumatologie. 2012; 24(2):140-51. doi:10.1007/s00064-011-0133-8.
  23. MacDessi SJ, Wood JA, Diwan AD, et al. Surgeon-defined assessment is a poor predictor of knee balance in total knee arthroplasty: a prospective, multicenter study. Knee Surg Sports Traumatol Arthrosc. 2021; 29(2):498-506. doi: 10.1007/s00167-020-05925-6.
  24. Moon YW, Kim JG, Han JH, Do KH, Seo JG, Lim HC. Factors correlated with the reducibility of varus deformity in knee osteoarthritis: an analysis using navigation guided TKA. Clin Orthop Surg. 2013; 5(1):36-43. doi:10.4055/cios.2013.5.1.36.
  25. Nagai K, Muratsu H, Takeoka Y, Tsubosaka M, Kuroda R, Matsumoto T. The Influence of Joint Distraction Force on the Soft-Tissue Balance Using Modified Gap-Balancing Technique in Posterior-Stabilized Total Knee Arthroplasty. J Arthroplasty. 2017; 32(10):2995-2999. doi:10.1016/j.arth.2017.04.058.
  26. Picard F, Deakin AH, Clarke IV, Dillon JM, Kinninmonth AW. A quantitative method of effective soft tissue management for varus knees in total knee replacement surgery using navigational techniques. Proc Inst Mech Eng H. 2007; 221(7):763-72. doi:10.1243/09544119JEIM272.

 

  1. Verdonk PC, Pernin J, Pinaroli A, Ait Si Selmi T, Neyret P. Soft tissue balancing in varus total knee arthroplasty: an algorithmic approach. Knee Surg Sports Traumatol Arthrosc. 2009; 17(6):660-6. doi:10.1007/s00167-009-0755-7.
  2. Lee O-S, Elazab A, Lee YS. Preoperative varus-valgus stress angle difference is valuable for predicting the extent of medial release in varus deformity during total knee arthroplasty. Knee Surg Relat Res. 2019; 31(1):12-18. doi: 10.5792/ksrr.18.033.
  3. Ahn JH, Lee SH, Yang TY. Varus-valgus stress radiograph as a predictor for extensive medial release in total knee arthroplasty. Int Orthop. 2016; 40(8):1639-1646. doi: 10.1007/s00264-015-3018-x.
  4. Sajjadi MM, Okhovatpour MA, Safaei Y, Faramarzi B, Zandi R. Is Standing Coronal Long-Leg Alignment View Effective in Predicting the Extent of Medial Soft Tissue Release in Varus Deformity during Total Knee Arthroplasty? J Knee Surg. 2022; 35(11):1192-1198. doi: 10.1055/s-0040-1721787.
  5. Nam SW, Kwak JH, Kim NK, Wang IW, Lee BK. Relationship between tibial bone defect and extent of medial release in total knee arthroplasty. Knee Surg Relat Res. 2012; 24(3):146-50. doi: 10.5792/ksrr.2012.24.3.146.
  6. Sim JA, Kwak JH, Yang SH, Moon SH, Lee BK, Kim JY. Utility of preoperative distractive stress radiograph for beginners to extent of medial release in total knee arthroplasty. Clin Orthop Surg. 2009; 1(2):110-3. doi:10.4055/cios.2009.1.2.110.
  7. Drexler M, Abolghasemian M, Barbuto R, et al. Patient's Height and Hip Medial Offset Are the Main Determinants of the Valgus Cut Angle During Total Knee Arthroplasty. J Arthroplasty. 2017; 32(5):1496-1501. doi:10.1016/j.arth.2016.12.021.
  8. Wang Y, Zeng Y, Dai K, Zhu Z, Xie L. Normal lower-extremity alignment parameters in healthy Southern Chinese adults as a guide in total knee arthroplasty. J Arthroplasty. 2010; 25(4):563-70. doi: 10.1016/j.arth.2009.03.021.
  9. Dunn HK, Goldberg VM, Krackow KA. Instructional course lectures. Primary total knee arthroplasty: surgical technique and principles. InProceedings of the 68th Annual Meeting of the American Academy of Orthopaedic Surgeons, San Francisco, CA 2001 (pp. 1-4).
  10. Moosa SS, Shaikh MHR, Khwaja M, et al. Sexual dimorphic parameters of femur: a clinical guide in orthopedics and forensic studies. J Med Life. 2021; 14(6):762-768. doi:10.25122/jml-2021-0022.