Partial Weight-Bearing after Lower Extremity Surgery: A Review of Current Standards, Innovations, and Patient Compliance

Document Type : CURRENT CONCEPTS REVIEW

Authors

1 Herbert Wertheim College of Medicine at Florida International University, Miami, FL, USA

2 Rothman Orthopaedics Florida at AdventHealth, Orlando, FL, USA

3 Villanova University, College of Engineering, Villanova, PA, USA

10.22038/abjs.2025.88277.4000

Abstract

Partial weight bearing (PWB) is a cornerstone of post-operative rehabilitation after lower extremity surgery (LES), balancing mechanical stimulation needed for bone, tendon, and cartilage healing with protection against excessive load that precipitates malunion, non-union, or joint dehiscence. This narrative review synthesizes literature to clarify current indications for PWB, evaluate traditional and emerging methods for prescribing and monitoring load, and identify factors influencing patient adherence. Hip, knee, ankle, and foot procedures commonly warrant PWB, yet optimal targets and progression schedules remain surgeon-dependent and inconsistently standardized. Household scales fail to replicate dynamic gait and are associated with poor long-term accuracy when compared to biofeedback devices, although these are the most widely adopted PWB adjuncts. Recent clinical trials demonstrate that wearable pressure-sensing insoles, audio or visual biofeedback, smartphone applications, telerehabilitation platforms, and virtual/augmented reality (VR/AR) or robotic off-loading devices markedly improve PWB precision, range of motion, muscle preservation, and functional scores without increasing complications. Nevertheless, widespread adoption is limited by cost, device sizing, battery life, and the requirement for continuous wear. Across studies that objectively quantified loading, adherence remains suboptimal, particularly among elderly and obese patients, underscoring the need for targeted educational interventions. Formal patient education, integrated into routine follow-up, may enhance understanding of PWB rationale, foster self-efficacy, and amplify the benefits of technology. Future research should prioritize high-quality randomized trials that combine sensor-derived compliance metrics with machine-learning analytics to individualize loading protocols, elucidate the drivers of non-adherence, and determine the cost-effectiveness of digital health solutions. Standardizing PWB guidelines while leveraging wearable, telehealth, and VR/AR technologies holds promise for accelerating recovery, reducing revision surgeries, and improving quality of life in an aging, fracture-prone population.
        Level of evidence: III

Keywords

Main Subjects


  1. Braun BJ, Veith NT, Rollmann M, et al. Weight-bearing recommendations after operative fracture treatment-fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole. Int Orthop. 41(8):1507-1512. doi:10.1007/s00264-017-3481-7.
  2. Hustedt JW, Blizzard DJ, Baumgaertner MR, Leslie MP, Grauer JN. Current advances in training orthopaedic patients to comply with partial weight-bearing instructions. Yale J Biol Med. 85(1):119-25.
  3. Hemmann P, Friederich M, Korner D, Klopfer T, Bahrs C. Changing epidemiology of lower extremity fractures in adults over a 15-year period - a National Hospital Discharge Registry study. BMC Musculoskelet Disord. 2021;22(1):456. doi:10.1186/s12891-021-04291-9.
  4. Kubiak EN, Beebe MJ, North K, Hitchcock R, Potter MQ. Early weight bearing after lower extremity fractures in adults. J Am Acad Orthop Surg.21(12):727-38. doi:10.5435/JAAOS-21-12-727.
  5. Stoller I, Babanin A, Baumgartner H, Schröter S, Ihle C, Döbele S. Feedback and analysis system to improve partial weight Bearing and Bone Healing following fractures and osteotomies of the Lower Limb. Acta Chir Orthop Traumatol Cech.2021;88(3):217-221.
  6. Jagtenberg EM, Kalmet PH, Krom MA, Blokhuis TJ, Seelen HAM, Poeze M. Feasibility and validity of ambulant biofeedback devices to improve weight-bearing compliance in trauma patients with lower extremity fractures: A narrative review. J Rehabil Med. 2020;52(8):jrm00092. doi:10.2340/16501977-2721.
  7. Fu MC, DeLuke L, Buerba RA, et al. Haptic biofeedback for improving compliance with lower-extremity partial weight bearing. Orthopedics. 2014;37(11):e993-8. doi:10.3928/01477447-20141023-56.
  8. Braun BJ, Bushuven E, Hell R, et al. A novel tool for continuous fracture aftercare - Clinical feasibility and first results of a new telemetric gait analysis insole. Injury. 2016;47(2):490-4. doi:10.1016/j.injury.2015.11.004.
  9. Braun BJ, Veith NT, Hell R, et al. Validation and reliability testing of a new, fully integrated gait analysis insole. J Foot Ankle Res. 2015;8:54. doi:10.1186/s13047-015-0111-8.
  10. Firoozabadi R, Harnden E, Krieg JC. Immediate weight-bearing after ankle fracture fixation. Adv Orthop. 2015;2015:491976. doi:10.1155/2015/491976.
  11. Zhao JG, Meng XH, Liu L, Zeng XT, Kan SL. Early functional rehabilitation versus traditional immobilization for surgical Achilles tendon repair after acute rupture: a systematic review of overlapping meta-analyses. Sci Rep. 2017;7:39871. doi:10.1038/srep39871.
  12. Senese M, Greenberg E, Todd Lawrence J, Ganley T. Rehabilitation Following Isolated Posterior Cruciate Ligament Reconstruction: A Literature Review of Published Protocols. Int J Sports Phys Ther. 2018;13(4):737-751.
  13. Cheatham SW, Kolber MJ. Rehabilitation after hip arthroscopy and labral repair in a high school football athlete. Int J Sports Phys Ther. 2012;7(2):173-84.
  14. Otoukesh B, Moshiri SF, Jahangiri B, et al. Digital monitoring of weight-bearing improves success rates and reduces complications in lower extremity surgeries. Eur J Transl Myol. 2023;33(4)doi:10.4081/ejtm.2023.11974.
  15. Galloway MT, Lalley AL, Shearn JT. The role of mechanical loading in tendon development, maintenance, injury, and repair. J Bone Joint Surg Am. 2013;95(17):1620-8. doi:10.2106/JBJS.L.01004.
  16. Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng. 2023;14:20417314231172573. doi:10.1177/20417314231172573.
  17. Escudero-Acurio P, Mahaluf F, Bahamonde L. Reconstruction of

 

        Type I-II Internal Hemipelvectomy in a Patient With Pelvic Myxoid Chondrosarcoma: A Case Report. Cureus. 2022;14(7):e26621. doi:10.7759/cureus.26621.

  1. Metcalfe A, Stewart C, Postans N, et al. Abnormal loading of the major joints in knee osteoarthritis and the response to knee replacement. Gait Posture. 2013;37(1):32-6. doi:10.1016/j.gaitpost.2012.04.018.
  2. Liang H, Hao Y, Yu W. Comparing robot-assisted and conventional surgery in knee replacement: A meta-analysis of surgical site wound complications and recovery outcomes. Asian J Surg. 2024:S1015-9584(24)02487-4. doi: 10.1016/j.asjsur.2024.10.154.
  3. Huang Z, Chen M, Ye Z. Efficacy of titanium locking plate combined with suture anchor repair on ankle joint functional recovery and quality of life in patients with ankle fractures. Pak J Med Sci. 2024;40(10):2350-2355. doi:10.12669/pjms.40.10.10308.
  4. Dabke HV, Gupta SK, Holt CA, O'Callaghan P, Dent CM. How accurate is partial weightbearing? Clin Orthop Relat Res. 2004;(421):282-6. doi:10.1097/01.blo.0000127116.13377.65.
  5. Warren CG, Lehmann JF. Training procedures and biofeedback methods to achieve controlled partial weight bearing: an assessment. Arch Phys Med Rehabil. 1975;56(10):449-55.
  6. Malviya A, Richards J, Jones RK, Udwadia A, Doyle J. Reproducibilty of partial weight bearing. Injury. 2005;36(4):556-9. doi:10.1016/j.injury.2004.10.004.
  7. Chow DH, Cheng CT. Quantitative analysis of the effects of audio biofeedback on weight-bearing characteristics of persons with transtibial amputation during early prosthetic ambulation. J Rehabil Res Dev. 2000;37(3):255-60.
  8. Hurkmans HL, Bussmann JB, Benda E, Verhaar JA, Stam HJ. Effectiveness of audio feedback for partial weight-bearing in and outside the hospital: a randomized controlled trial. Arch Phys Med Rehabil. 2012;93(4):565-70. doi:10.1016/j.apmr.2011.11.019.
  9. Hershko E, Tauber C, Carmeli E. Biofeedback versus physiotherapy in patients with partial weight-bearing. Am J Orthop (Belle Mead NJ). 2008;37(5):E92-6.
  10. Avci EE, Akgun G, Uygur ME, Polat MG, Demirbuken I. Improving partial weight bearing compliance with a smart insole: Validity, reliability, and feasibility study. Foot Ankle Surg. 2025:S1268-7731(25)00114-6. doi: 10.1016/j.fas.2025.04.007.
  11. Merkle TP, Hofmann N, Schmidt J, Dietrich T, Knop C, Da Silva T. Continuous real-time biofeedback in orthosis improves partial weight bearing on stairs. Arch Orthop Trauma Surg. 2023;143(9):5701-5706. doi:10.1007/s00402-023-04878-y.
  12. Raaben M, Vogely HC, Blokhuis TJ. Real-time visual biofeedback to improve therapy compliance after total hip arthroplasty: A pilot randomized controlled trial. Gait Posture. 2018;61:306-310. doi:10.1016/j.gaitpost.2018.01.038.
  13. Braun BJ, Histing T, Menger MM, et al. Wearable activity data can predict functional recovery after musculoskeletal injury: Feasibility of a machine learning approach. Injury. 2024;55(2):111254. doi:10.1016/j.injury.2023.111254.
  14. Arcobelli VA, Zauli M, Galteri G, et al. mCrutch: A Novel m-Health Approach Supporting Continuity of Care. Sensors (Basel). 2023;23(8):4151. doi: 10.3390/s23084151.
  15. Piqueras M, Marco E, Coll M, et al. Effectiveness of an interactive virtual telerehabilitation system in patients after total knee arthoplasty: a randomized controlled trial. J Rehabil Med. 2013;45(4):392-6. doi:10.2340/16501977-1119.
  16. Zhao R, Cheng L, Zheng Q, et al. A Smartphone Application-Based Remote Rehabilitation System for Post-Total Knee Arthroplasty Rehabilitation: A Randomized Controlled Trial. J Arthroplasty. 2024;39(3):575-581 e8. doi:10.1016/j.arth.2023.08.019.
  17. Wang Q, Hunter S, Lee RL, Chan SW. The effectiveness of a mobile application-based programme for rehabilitation after total hip or knee arthroplasty: A randomised controlled trial. Int J Nurs Stud. 2023;140:104455. doi:10.1016/j.ijnurstu.2023.104455.
  18. Zhang YY, Zhang YG, Li Z, Li SH, Xu WG. Effect of Home-based Telerehabilitation on the Postoperative Rehabilitation Outcome of Hip Fracture in the Aging Population. Orthop Surg. 2022;14(8):1768-1777. doi:10.1111/os.13293.
  19. Liu HW, Lee SD. Virtual Reality-Assisted Rehabilitation for Patients Undergoing Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil. 2025. doi: 10.1097/PHM.0000000000002747.
  20. Lim JY, Yu HJ, Kim SH, et al. Effectiveness of In-Home, Augmented Reality-Based Telerehabilitation After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Orthop J Sports Med. 2024;12(10):23259671241271729. doi:10.1177/23259671241271729.
  21. Henkelmann R, Palke L, Schneider S, et al. Impact of anti-gravity treadmill rehabilitation therapy on the clinical outcomes after fixation of lower limb fractures: A randomized clinical trial. Clin Rehabil. 2021;35(3):356-366. doi:10.1177/0269215520966857.
  22. Merkle TP, Hofmann N, Knop C, Da Silva T. Can elderly individuals perform partial weight bearing on their lower limbs? A prospective cohort study using ambulatory real-time biofeedback. J Orthop Surg Res. 2023;18(1):324. doi:10.1186/s13018-023-03807-4.
  23. Anderson PM, Heinz T, Scholmann E, et al. Efficacy of post-operative partial weight-bearing after total knee arthroplasty - a prospective observational trial. Int Orthop. 2023;47(9):2189-2195. doi:10.1007/s00264-023-05783-0.
  24. Eickhoff AM, Cintean R, Fiedler C, Gebhard F, Schutze K, Richter PH. Analysis of partial weight bearing after surgical treatment in patients with injuries of the lower extremity. Arch Orthop Trauma Surg. 2022;142(1):77-81. doi:10.1007/s00402-020-03588-z.
  25. Orth M, Ganse B, Andres A, et al. Simulation-based prediction of bone healing and treatment recommendations for lower leg fractures: Effects of motion, weight-bearing and fibular mechanics. Front Bioeng Biotechnol. 2023;11:1067845. doi:10.3389/fbioe.2023.1067845.