Preliminary Study for the Early Diagnosis of Osteoarthritis in Human Synovial Fluid Using ATR-FTIR Combined with Chemometrics

Document Type : RESEARCH PAPER

Authors

1 University Malaya, Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia

2 University of Putra Malaysia, Spine Research Unit (SRU), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia

3 University of Putra Malaysia, International Institute for Halal Research and Training, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia

4 Royal College of Surgeons, Edinburgh, Joint Reconstruction Unit (JRU), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia

5 Selçuk University, Konya, Department of Biochemistry, Selcuk University, Ardıçlı, İsmetpaşa Cad, Selçuklu/Konya, Türkiye

6 Liverpool University, Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia

10.22038/abjs.2025.83723.3810

Abstract

Objectives: Osteoarthritis (OA) is the most common form of arthritis resulting in joint deterioration. Currently, OA treatment primarily focuses on symptom management. The development of tools suitable for diagnosis is needed to support a paradigm shift towards the prevention of OA rather than treatment. Therefore, having effective diagnostic tools for early detection of OA is crucial.
Methods: The present study aimed to develop a rapid, inexpensive, and reliable detection method using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and chemometrics using synovial fluid (SF) for the early diagnosis of osteoarthritis (OA). A preliminary sample consisting of 10 participants in the OA group and 10 in the non-OA group was used to establish the feasibility of the method. All synovial fluid samples were handled uniformly, using fresh drops of 50 µL from each sample ten times, resulting in a total of 200 infrared spectra collected and analysed, revealing significant differences that effectively separated the OA and non-OA groups, demonstrating the potential of this approach for future larger-scale studies.
Results: A significant discrepancy seen in distinguishing SF samples from different categories via variance spectra specifically highlighted by wavenumber 551 cm-1. The predictive model achieved an accuracy rate of 85%, demonstrating promising results.
Conclusion: Our findings suggest that a discriminative model using the ATR-FTIR spectrum could enhance early diagnosis of human OA, providing superior results compared to using serum. This approach reflects the localized joint condition more accurately than serum, which reflects systemic condition.
        Level of evidence: IV

Keywords

Main Subjects


  1. Chen DI, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017:5:16044. doi: 10.1038/boneres.2016.44.
  2. Aziz AA, Selvaratnam V, Fikri YF, Sani MS, Kamarul T. Diagnosis of osteoarthritis at an early stage via infrared spectroscopy combined chemometrics in human serum: A pilot study. Processes. 2023;11(2):404.
  3. Aiyer R, Noori S, Schirripa F, et al. Treatment of knee osteoarthritic pain with platelet-rich plasma: A systematic review of clinical studies. Pain Manag. 2021;11(4):419-431. doi: 10.2217/pmt-2020-0052.
  4. Fan X, Sun AR, Young RS, et al. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Res. 2024;12(1):7. doi: 10.1038/s41413-023-00304-6.
  5. Henrotin Y. Osteoarthritis in year 2021: biochemical markers. Osteoarthritis Cartilage. 2022;30(2):237-248. doi: 10.1016/j.joca.2021.11.001.
  6. Yu C, Zhao B, Li Y, Zang H, Li L. Vibrational spectroscopy in assessment of early osteoarthritis—a narrative review. Int J Mol Sci. 2021;22(10):5235. doi: 10.3390/ijms22105235.
  7. Wang K, Li Y, Lin J. Identification of diagnostic biomarkers for osteoarthritis through bioinformatics and machine learning. Heliyon. 2024;10(6):e27506. doi: 10.1016/j.heliyon.2024.e27506.
  8. Steinbusch MM, Fang Y, Milner PI, et al. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Sci Rep. 2017:7:43558. doi: 10.1038/srep43558.
  9. Kalogera S, Jansen MP, Bay-Jensen AC, et al. Relevance of biomarkers in serum vs. synovial fluid in patients with knee osteoarthritis. Int J Mol Sci. 2023;24(11):9483. doi: 10.3390/ijms24119483.
  10. Shaw RA, Mantsch HH. Infrared spectroscopy of biological fluids in clinical and diagnostic analysis. Encyclopedia of analytical chemistry: applications, theory and instrumentation. 2006.
  11. Smith BC, eds. Fundamentals of Fourier transform infrared spectroscopy. 2st ed. CRC press; 2011.
  12. Malek S, Marini F, Rochat MC, Béraud R, Wright GM, Riley CB. Infrared spectroscopy of synovial fluid as a potential screening approach for the diagnosis of naturally occurring canine osteoarthritis associated with cranial cruciate ligament rupture. Osteoarthr Cartil Open. 2020;2(4):100120. doi: 10.1016/j.ocarto.2020.100120.
  13. Hou S. Development of diagnostic models for canine osteoarthritis based on serum and joint fluid mid‐infrared spectral data using five different discrimination and classification methods. Journal of Chemometrics. 2016;30(11):663-81.
  14. Panizzi L, Vignes M, Dittmer KE, et al. Infrared spectroscopy of serum fails to identify early biomarker changes in an equine model of traumatic osteoarthritis. Osteoarthr Cartil Open. 2022;4(4):100297. doi: 10.1016/j.ocarto.2022.100297.
  15. Stang A, McIntyre L, Reitsma JB, Rutjes AWS, Whiting P, Vlassov VV, Leeflang MMG, Deeks JJ. Assessing the quality of diagnostic studies: An overview of methodological issues and tools. In: Deeks JJ, Bossuyt PM, Gatsonis C, editors. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy, Version 1.0.0. The Cochrane Collaboration; 2009. Chapter 9.
  16. Rothman KJ, Greenland S, Lash TL, eds. Modern epidemiology. 3st ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.
  17. Goulet MA, Cousineau D. The power of replicated measures to increase statistical power. Advances in Methods and Practices in Psychological Science. 2019;2(3):199-213.
  18. Ji C, Zhang C, Xu Z, Chen Y, et al. Mussel-inspired HA@ TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front Bioeng Biotechnol. 2023:11:1193605. doi: 10.3389/fbioe.2023.1193605.
  19. Al-Khateeb R, Prpic J. Hyaluronic acid: the reason for its variety of physiological and biochemical functional properties. Applied Clinical Research, Clinical Trials and Regulatory Affairs. 2019;6(2):112-59.
  20. Tamer TM. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip Toxicol. 2013;6(3):111-25. doi: 10.2478/intox-2013-0019.
  21. Adachi T, Miyamoto N, Imamura H, et al. Three-dimensional culture of cartilage tissue on nanogel-cross-linked porous freeze-dried gel scaffold for regenerative cartilage therapy: A vibrational spectroscopy evaluation. Int J Mol Sci. 2022;23(15):8099. doi: 10.3390/ijms23158099.
  22. Rosenthal AK, Ryan LM. Calcium pyrophosphate deposition disease. N Engl J Med. 2016; 374(26):2575-84. doi: 10.1056/NEJMra1511117.
  23. Parperis K, Papachristodoulou E, Kakoullis L, Rosenthal AK. Management of calcium pyrophosphate crystal deposition disease: a systematic review. Semin Arthritis Rheum. 2021;51(1):84-94. doi: 10.1016/j.semarthrit.2020.10.005.
  24. Robertson DS. A hypothesis of bone joint defects. Med Hypotheses. 2020:145:110347. doi: 10.1016/j.mehy.2020.110347.
  25. Hayat A, Raziq F, Khan M, et al. Visible-light enhanced photocatalytic performance of polypyrrole/g-C3N4 composites for water splitting to evolve H2 and pollutants degradation. Journal of Photochemistry and Photobiology A: Chemistry. 2019;379:88-98.
  26. Panizzi L, Vignes M, Dittmer KE, Waterland MR, Rogers CW, Sano H, McIlwraith CW, Pemberton S, Owen M, Riley CB. Infrared spectroscopy of serum fails to identify early biomarker changes in an equine model of traumatic osteoarthritis. Osteoarthr Cartil Open. 2022;4(4):100297. doi: 10.1016/j.ocarto.2022.100297.
  27. Unal M, Akkus O. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo. J Biomed Opt. 2018;23(1):1-11. doi: 10.1117/1.JBO.23.1.015008.
  28. Morais CL, Lima KM, Singh M, Martin FL. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat Protoc. 2020;15(7):2143-2162. doi: 10.1038/s41596-020-0322-8.
  29. Fălămaș A, Rotaru H, Hedeșiu M. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis. Lasers Med Sci. 2020;35(6):1393-1401. doi: 10.1007/s10103-020-02988-2.
  30. Lin X, Moreno IY, Nguyen L, Gesteira TF, Coulson-Thomas VJ. ROS-mediated fragmentation alters the effects of hyaluronan on corneal epithelial wound healing. Biomolecules. 2023;13(9):1385. doi: 10.3390/biom13091385.
  31. Fragassi A. Rational development of intra-articular drug delivery systems for the treatment of osteoarthritis.2024.
  32. Qadri MM. Targeting CD44 receptor pathways in degenerative joint diseases: involvement of proteoglycan-4 (PRG4). Pharmaceuticals (Basel). 2023;16(10):1425. doi: 10.3390/ph16101425.
  33. Klatt AR, Paul‐Klausch B, Klinger G, et al. A critical role for collagen II in cartilage matrix degradation: collagen II induces pro‐inflammatory cytokines and MMPs in primary human chondrocytes. J Orthop Res. 2009;27(1):65-70. doi: 10.1002/jor.20716.
  34. Park YH, Kong T, Roede JR, Jones DP, Lee K. A biplot correlation range for group-wise metabolite selection in mass spectrometry. BioData Min. 2019:12:4. doi: 10.1186/s13040-019-0191-2.
  35. Lou C, Atoui MA, Li X. Novel online discriminant analysis based schemes to deal with observations from known and new classes: Application to industrial systems. Engineering Applications of Artificial Intelligence. 2022;111:104811.
  36. Westad F, Marini F. Validation of chemometric models–a tutorial. Anal Chim Acta. 2015:893:14-24. doi: 10.1016/j.aca.2015.06.056.
  37. Solarino G, Bizzoca D, Moretti L, Vicenti G, Piazzolla A, Moretti B. What’s new in the diagnosis of periprosthetic joint infections: focus on synovial fluid biomarkers. Trop Med Infect Dis. 2022;7(11):355. doi: 10.3390/tropicalmed7110355.
  38. Stabile M, Girelli CR, Lacitignola L, et al. 1H-NMR metabolomic profile of healthy and osteoarthritic canine synovial fluid before and after UC-II supplementation. Sci Rep. 2022;12(1):19716. doi: 10.1038/s41598-022-23977-1.
  39. Overmyer KA, Muir P, Coon JJ. Discovery metabolomics and lipidomics of canine synovial fluid and serum. Osteoarthritis and Cartilage. 2018;26:S172.
  40. Karpiński R. Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science. 2022;18(2):71-85.
  41. Smith B. The CO bond, Part I: Introduction and the infrared spectroscopy of alcohols. 2017: 14-21.