Comparing 3D MERGE MRI and 2D MRI for Rotator Cuff Tear Evaluation and Surgical Planning; A Cross-Sectional Prospective Study

Document Type : RESEARCH PAPER

Authors

1 Department of Radiology, University of California San Diego, San Diego, CA, USA

2 Musculoskeletal imaging research center, Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Fars, Iran

4 Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

5 Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department Orthopedics, School of Medicine, Imam Khomeini Hospital Complex, Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran

10.22038/abjs.2025.83512.3802

Abstract

Objectives: Accurate diagnosis and characterization of rotator cuff tendon (RCT) tears are crucial for optimal treatment planning. This study compared the diagnostic performance of 3D Multiple Echo Recombined Gradient Echo (MERGE) MRI with conventional 2D MRI for the assessment of RCT tears and surgical planning.
Methods: Sixty-two patients with suspected RCT tear underwent shoulder MRI using standard 2D and 3D MERGE protocols, followed by arthroscopic evaluation. RCT tears were classified as crescent, longitudinal, or massive. The sensitivity, specificity, and accuracy of 3D MERGE and 2D MRI were calculated using arthroscopy as the reference standard. Inter-observer agreement was assessed using kappa statistics.
Results: Arthroscopy confirmed crescent tears in 25 patients (40%), longitudinal tears in 9 patients (15%), and massive tears in 28 patients (45%). 3D MERGE MRI demonstrated higher accuracy for tear shape classification compared to 2D MRI (90.5% vs. 79.6%, P < 0.05). Sensitivity and specificity were markedly improved with 3D MERGE MRI, particularly for crescent tears (sensitivity 88.2% vs. 70.6%, specificity of 94.6% vs. 86.5%, P < 0.05). The inter-observer agreement was excellent for 3D MERGE MRI (kappa = 0.91) and good for 2D MRI (kappa = 0.76).
Conclusion: 3D MERGE MRI exhibited superior diagnostic performance and reliability compared to 2D MRI in characterizing RCT tears. The enhanced accuracy of 3D MERGE MRI may facilitate preoperative assessment and surgical decision-making for RCT tears.
        Level of evidence: II

Keywords

Main Subjects


  1. Eubank B, Sheps DM, Dennett L, et al. A Scoping Review and Best Evidence Synthesis for Treatment of Partial-Thickness Rotator Cuff Tears. J Shoulder Elbow Surg. 2024; 33(3):e126-e152. doi:10.1016/j.jse.2023.10.027.
  2. Lo IK, Burkhart SS. Arthroscopic repair of massive, contracted, immobile rotator cuff tears using single and double interval slides: technique and preliminary results. Arthroscopy.2004; 20(1):22-33. doi:10.1016/j.arthro.2003.11.013.
  3. Farbood A, Jowkar S, Askarian M, Momenzadeh O, Shayan Z, Zare A. The Persian Version of Constant-murley Score in Patients with Rotator Cuff Tears: Reliability and Validity. Arch Bone Jt Surg. 2025; 13(2):75. doi:  10.22038/abjs.2024.73893.3453
  4. Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med.2012; 31(4):589-604. doi:10.1016/j.csm.2012.07.001.
  5. Sambandam SN, Khanna V, Gul A, Mounasamy V. Rotator cuff tears: An evidence based approach. World J Orthop.2015; 6(11):902-18. doi:10.5312/wjo.v6.i11.902.
  6. Serhal A, Hinkel T, Adams B, Garg A, Omar IM, Youngner J. Imaging of Sports Injuries of the Upper Extremity. Advances in Clinical Radiology.2021; 3:203-216.
  7. Plancher KD, Shanmugam J, Briggs K, Petterson SC. Diagnosis and Management of Partial Thickness Rotator Cuff Tears: A Comprehensive Review. J Am Acad Orthop Surg.2021; 29(24):1031-1043. doi:10.5435/JAAOS-D-20-01092.
  8. Kijowski R, Gold GE. Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging.2011; 33(4):758-71. doi:10.1002/jmri.22342.
  9. Armstrong T, Henderson D, Entwistle I, Iball G, Rowbotham E. Combination CT and MRI shoulder arthrography: a novel technique and improved patient journey. Clin Radio. 2022; 77(10):738-742. doi: 10.1016/j.crad.2022.06.020.
  10. Ahn TR, Yoon YC, Yoo JC, Kim HS, Lee JH. Diagnostic performance of conventional magnetic resonance imaging for detection and grading of subscapularis tendon tear according to Yoo and Rhee classification system in patients underwent arthroscopic rotator cuff surgery. Skeletal Radiol.2022; 51(3):659-668. doi:10.1007/s00256-021-03958-7.
  11. Lee SH, Yun SJ, Jin W, Park SY, Park JS, Ryu KN. Comparison between 3D isotropic and 2D conventional MR arthrography for diagnosing rotator cuff tear and labral lesions: A meta- analysis. J Magn Reson Imaging.2018; 48(4):1034-1045. doi:10.1002/jmri.26024.
  12. Gottsegen CJ, Merkle AN, Bencardino JT, Gyftopoulos S. Advanced MRI Techniques of the Shoulder Joint: Current Applications in Clinical Practice. AJR Am J Roentgenol.2017; 209(3):544-551. doi:10.2214/AJR.17.17945.
  13. Daniels SP, Gyftopoulos S. Semin Musculoskelet Radiol. 2021; 25(3):480-487. doi: 10.1055/s-0041-1728813.
  14. Gyftopoulos S, Beltran LS, Gibbs K, et al. Rotator cuff tear shape characterization: a comparison of two-dimensional imaging and three-dimensional magnetic resonance reconstructions. J Shoulder Elbow Surg.2016; 25(1):22-30. doi:10.1016/j.jse.2015.03.028.
  15. Greenspoon JA, Petri M, Warth RJ, Millett PJ. Massive rotator cuff tears: pathomechanics, current treatment options, and clinical outcomes. J Shoulder Elbow Surg.2015; 24(9):1493-505. doi:10.1016/j.jse.2015.04.005.
  16. McGarvey C, Harb Z, Smith C, Houghton R, Corbett S, Ajuied A. Diagnosis of rotator cuff tears using 3-Tesla MRI versus 3-Tesla MRA: a systematic review and meta-analysis. Skeletal Radiol.2016; 45(2):251-61. doi:10.1007/s00256-015-2299-x.
  17. Goodwin DS, Kaplan DJ, Fralinger D, Gyftopoulos S, Meislin RJ, Jazrawi LM. Rotator Cuff Tear Shape Characterization. Orthopaedic Journal of Sports Medicine.2016; 4(7_suppl4):2325967116S00107. doi:10.1177/2325967116s00107.
  18. Nalaini F, Mohammadi M, Mahdavikian S, Farshchian N. A Comparative Study on the Diagnostic Value of Conventional Spin Echo Proton Density and Fast Spin Echo Proton Density Sequences of Magnetic Resonance Imaging in Diagnosis of Meniscal Tear. Indian Journal of Forensic Medicine & Toxicology.2022; 16(1) doi:10.37506/ijfmt.v16i1.17496.
  19. Martin N, Malfair D, Zhao Y, et al. Comparison of MERGE and axial T2-weighted fast spin-echo sequences for detection of multiple sclerosis lesions in the cervical spinal cord. AJR Am J Roentgenol.2012; 199(1):157-62. doi:10.2214/AJR.11.7039.
  20. Ogier A, Sdika M, Foure A, Le Troter A, Bendahan D. Individual muscle segmentation in MR images: A 3D propagation through 2D non-linear registration approaches. Annu Int Conf IEEE Eng Med Biol Soc. 2017:2017:317-320. doi: 10.1109/EMBC.2017.8036826.
  21. Tawfik AM, El-Morsy A, Badran MA. Rotator cuff disorders: How to write a surgically relevant magnetic resonance imaging report? World J Radiol. 2014;6(6):274-83. doi: 10.4329/wjr.v6.i6.274.
  22. Young A, Yusuf F, Farthing M, Hafezi-Bakhtiari N. Actionable reporting. Clinical Radiology.2022; 77:e12.
  23. Muto T, Inui H, Tanaka H. Development of Three-dimensional Rotator Cuff Tendon Magnetic Resonance Imaging System. Orthopaedic Journal of Sports Medicine.2017; 5(7_suppl6) doi: 10.1177/2325967117s00367.
  24. Habermeyer P, Krieter C, Tang KL, Lichtenberg S, Magosch P. A new arthroscopic classification of articular-sided supraspinatus footprint lesions: a prospective comparison with Snyder's and Ellman's classification. J Shoulder Elbow Surg.2008; 17(6):909-13. doi:10.1016/j.jse.2008.06.007.
  25. Fossati C, Randelli PS. Rotator Cuff Tear. In: Espregueira-Mendes J, Karlsson J, Musahl V, Ayeni OR, eds. Orthopaedic Sports Medicine: An Encyclopedic Review of Diagnosis, Prevention, and Management. Springer International Publishing; 2023:1-21.
  26. Yubran AP, Pesquera LC, Juan ELS, et al. Rotator cuff tear patterns: MRI appearance and its surgical relevance. Insights Imaging. 2024; 15(1):61. doi: 10.1186/s13244-024-01607-w.
  27. Franceschi F, Papalia R, Palumbo A, Del Buono A, Maffulli N, Denaro V. Operative management of partial-and full-thickness rotator cuff tears. Med Sport Sci. 2012; 57(1):100-13. doi: 10.1159/000328888.
  28. Samim M, Walsh P, Gyftopoulos S, Meislin R, Beltran LS. Postoperative MRI of Massive Rotator Cuff Tears. AJR Am J Roentgenol.2018; 211(1):146-154. doi:10.2214/AJR.17.19281.
  29. Lambert A, Loffroy R, Guiu B, et al. Rotator cuff tears: value of 3.0 T MRI. Journal de radiologie. 2009; 90(5 Pt 1):583-8.. doi:10.1016/s0221-0363(09)74024-7.
  30. Okoroha KR, Mehran N, Duncan J, et al. Characterization of Rotator Cuff Tears: Ultrasound Versus Magnetic Resonance Imaging. Orthopedics.2017; 40(1):e124-e130. doi:10.3928/01477447-20161013-04.
  31. Lee MH, Kim JY, Lee K, Choi CH, Hwang JY. Wide-field 3d ultrasound imaging platform with a semi-automatic 3d segmentation algorithm for quantitative analysis of rotator cuff tears. IEEE Access. 2020 6; 8:65472-87. doi:10.1109/ACCESS.2020.2985858.
  32. Davidson J, Burkhart SS. The geometric classification of rotator cuff tears: a system linking tear pattern to treatment and prognosis. Arthroscopy.2010; 26(3):417-24. doi:10.1016/j.arthro.2009.07.009.
  33. Davidson JF, Burkhart SS, Richards DP, Campbell SE. Use of preoperative magnetic resonance imaging to predict rotator cuff tear pattern and method of repair. Arthroscopy.2005; 21(12):1428. doi:10.1016/j.arthro.2005.09.015.
  34. Smith TO, Daniell H, Geere JA, Toms AP, Hing CB. The diagnostic accuracy of MRI for the detection of partial- and full-thickness rotator cuff tears in adults. Magn Reson Imaging.2012; 30(3):336-46. doi:10.1016/j.mri.2011.12.008.
  35. Pesquer L, Borghol S, Meyer P, Ropars M, Dallaudiere B, Abadie P. Multimodality imaging of subacromial impingement syndrome. Skeletal Radiol.2018; 47(7):923-937. doi:10.1007/s00256-018-2875-y.
  36. Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics.2006; 26(4):1045-65. doi:10.1148/rg.264055087.
  37. Bloom DA, Gyftopoulos S, Alaia MJ, Youm T, Campbell KA, Alaia EF. Variability of MRI reporting in proximal hamstring avulsion injuries: Are musculoskeletal radiologists and orthopedic surgeons utilizing similar landmarks? Clin Imaging. 2023:93:46-51. doi: 10.1016/j.clinimag.2022.09.001.