Helical, Spring and Curled Nano/Micro Fibrous Structures for Tissue Engineering Application

Document Type : CURRENT CONCEPTS REVIEW

Authors

1 Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran - Bone and Joint Research laboratory, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran

2 Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran - Bone and Joint Research laboratory, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran - Faculty of New Sciences and Technologies, Department of biomedical engineering, Semnan University, Semnan, Iran

3 Chemical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran - Institute of nanotechnology, University of Sistan and Baluchestan, Zahedan, Iran

10.22038/abjs.2025.80254.3663

Abstract

Over the past few decades, the engineering of helical, spring, curled, and hierarchically structured 
nano/microfibers has attracted considerable attention due to their unique characteristics and potential 
applications in tissue engineering and various industrial fields. Understandin g the parameters and 
processes involved in the fabrication of these fibers is essential. This comprehensive review outlines 
recent advancements in research on helical nano/microfibers, focusing on processing techniques, fiber 
structure, and property characterization, and their applications in fields such as tissue engineering and 
regenerative medicine. The study also investigates the mechanical and hydrodynamic parameters that 
influence the fabrication of helical fibers using contemporary techniques. It hig hlights that helical 
structures form when electric and elastic forces are balanced due to non -uniform electric fields. The 
coaxial electrospinning technique, along with the use of polymers with varying elastic and conductive 
properties, plays a crucial role in producing these structures. The distinctive properties of helical 
nanofibers, such as their mechanical strength, high porosity, biocompatibility, and ability to promote 
cellular activities, make them promising candidates for developing scaffolds in bo ne tissue engineering.
 Level of evidence: III

Keywords

Main Subjects


  1. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006; 17(14):R89. doi:10.1088/0957-4484/17/14/R01.
  2. Suda Y, Maruyama K, Iida T, et al. High-Yield Synthesis of Helical Carbon Nanofibers Using Iron Oxide Fine Powder as a Catalyst. Crystals. 2015; 5(1):47-60. doi:10.3390/cryst5010047.
  3. Subbiah T, Bhat G, Tock R, Parameswaran S, Ramkumar S. Electrospinning of nanofibers. Journal of applied polymer science. 2005; 96(2):557-569. doi:10.1002/app.21481.
  4. Venugopal J, Ramakrishna S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol. 2005; 125(3):147-157. doi:10.1385/ABAB:125:3:147.
  5. Liao S, Li B, Ma Z, Wei H, Chan C, Ramakrishna S. Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater. 2006; 1(3):R45. doi:10.1088/1748-6041/1/3/R01.
  6. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008; 29(13):1989-2006. doi:10.1016/j.biomaterials.2008.01.011.
  7. Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Annu Rev Mater Res. 2006; 36:333-368. doi:10.1146/annurev.matsci.36.011205.123537.
  8. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science. 2014; 49(2):463-480. doi:10.1007/s10853-013-7705-y.
  9. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular materials and engineering. 2013; 298(5):504-520. doi:10.1002/mame.201200290.
  10. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006; 12(5):1197-1211. doi:10.1089/ten.2006.12.1197.
  11. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology. 2003; 63(15):2223-2253. doi:10.1016/S0266-3538(03)00178-7.
  12. Hadjizadeh A, Ajji A, Bureau MN. Nano/micro electro-spun polyethylene terephthalate fibrous mat preparation and characterization. J Mech Behav Biomed Mater. 2011; 4(3):340-351. doi:10.1016/j.jmbbm.2010.10.014.
  13. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006; 12(5):1197-211. doi: 10.1089/ten.2006.12.1197.
  14. Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasché P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomater. 2017; 48:20-40. doi:10.1016/j.actbio.2016.11.014.
  15. Gao Y, Bach Truong Y, Zhu Y, Louis Kyratzis I. Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. Journal of Applied Polymer Science. 2014; 131(18). doi:10.1002/app.40797.
  16. Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014; 10(1):11-25. doi:10.1016/j.actbio.2013.08.022.
  17. Metter RB, Ifkovits JL, Hou K, et al. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater. 2010; 6(4):1219-1226. doi:10.1016/j.actbio.2009.10.027.
  18. Moreno M, Ajji A, Mohebbi‐Kalhori D, Rukhlova M, Hadjizadeh A, Bureau M. Development of a compliant and cytocompatible micro‐fibrous polyethylene terephthalate vascular scaffold. J Biomed Mater Res B Appl Biomater. 2011; 97(2):201-214. doi:10.1002/jbm.b.31774.
  19. Reneker D, Yarin A, Zussman E, Xu H. Electrospinning of nanofibers from polymer solutions and melts. Advances in applied mechanics. 2007; 41:43-346. doi:10.1016/S0065-2156(07)41002-X.
  20. Deitzel JM, Kleinmeyer J, Harris D, Tan NB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001; 42(1):261-272. doi:10.1016/S0032-3861(00)00250-0.
  21. Nakata K, Fujii K, Ohkoshi Y, et al. Poly (ethylene terephthalate) Nanofibers Made by Sea–Island‐Type Conjugated Melt Spinning and Laser‐Heated Flow Drawing. Macromolecular rapid communications. 2007; 28(6):792-795. doi:10.1002/marc.200600624.
  22. Hulteen J, Chen H, Chambliss C, Martin C. Template synthesis of carbon nanotubule and nanofiber arrays. Nanostructured Materials. 1997; 9(1):133-136. doi:10.1016/S0965-9773(97)00036-6.
  23. Tronci G, Doyle A, Russell SJ, Wood DJ. Structure-property-function relationships in triple-helical collagen hydrogels. MRS Online Proceedings Library (OPL). 2012; 1498:145-50.
  24. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008; 49(10):2387-2425. doi:10.1016/j.polymer.2008.02.002.
  25. Choktaweesap N, Arayanarakul K, Aht-Ong D, Meechaisue C, Supaphol P. Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polymer journal. 2007; 39(6):622-631. doi:10.1295/polymj.PJ2006190.
  26. Zander NE. Hierarchically structured electrospun fibers. Polymers. 2013; 5(1):19-44. doi:10.3390/polym5010019.
  27. Duan Y, Yan S, Zhou X, et al. The morphology transformation from helical nanofiber to helical nanotube in a diarylethene self-assembly system. Chem Commun. 2014; 50(61):8335-8338. doi:10.1039/C4CC02580F.
  28. Lee S, Kim B, Lee D, et al. Fabrication and mechanical properties of suspended one-dimensional polymer nanostructures: polypyrrole nanotube and helical polyacetylene nanofibre. Nanotechnology. 2006; 17(4):992. doi:10.1088/0957-4484/17/4/025.
  29. Jin ZX, Wang ZY, Lee HJ, Park YW, Akagi K. The hierarchical microstructure of helical polyacetylene nanofibers. Current Applied Physics. 2007; 7(4):367-369. doi:10.1016/j.cap.2006.09.008.
  30. Kong XY, Wang ZL. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters. 2003; 3(12):1625-1631. doi:10.1021/nl034463p.
  31. Zhang HF, Wang CM, Buck EC, Wang LS. Synthesis, characterization, and manipulation of helical SiO2 nanosprings. Nano Letters. 2003; 3(5):577-580. doi:10.1021/nl0341180.
  32. Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science. 2001; 291(5510):1947-1949. doi:10.1126/science.1058120.
  33. Chang G, Shen J. Helical nanoribbons fabricated by electrospinning. Macromolecular Materials and Engineering. 2011; 296(12):1071-1074. doi:10.1002/mame.201100060.
  34. Godinho M, Canejo J, Feio G, Terentjev E. Self-winding of helices in plant tendrils and cellulose liquid crystal fibers. Soft Matter. 2010; 6(23):5965-5970. doi:10.1039/C0SM00427H.
  35. Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of applied physics. 2000; 87(9):4531-4547. doi:10.1063/1.373532.
  36. Wu H, Zheng Y, Zeng Y. Fabrication of Helical Nanofibers via Co-Electrospinning. Industrial & Engineering Chemistry Research. 2015; 54(3):987-993. doi:10.1021/ie504305s.
  37. He J, Zhou Y, Wang L, Liu R, Qi K, Cui S. Fabrication of continuous nanofiber core-spun yarn by a novel electrospinning method. Fibers and Polymers. 2014; 15(10):2061-2065. doi:10.1007/s12221-014-2061-3.
  38. Bazilevsky AV, Yarin AL, Megaridis CM. Co-electrospinning of core-shell fibers using a single-nozzle technique. Langmuir. 2007; 23(5):2311-2314. doi:10.1021/la063194q.
  39. Fang F, Du Z, Zeng J, et al. Micro/nanoscale continuous printing: direct-writing of wavy micro/nano structures via electrospinning. InIOP Conference Series: Materials Science and Engineering. 2015:012018.
  40. Reneker D, Kataphinan W, Theron A, Zussman E, Yarin A. Nanofiber garlands of polycaprolactone by electrospinning. Polymer. 2002; 43(25):6785-6794. doi:10.1016/S0032-3861(02)00595-5.
  41. Senthilram T, Mary LA, Venugopal JR, Nagarajan L, Ramakrishna S, Dev VRG. Self-crimped and aligned fibers. Materials Today. 2011; 14(5):226-229. doi:10.1016/S1369-7021(11)70118-3.

 

  1. Canejo JP, Borges JP, Godinho MH, Brogueira P, Teixeira PI, Terentjev EM. Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro‐and Nanofibers. Adv Mater. 2008;20(24):4821-4825. doi:10.1002/adma.200801008.
  2. Surrao DC, Hayami JW, Waldman SD, Amsden BG. Self- crimping, biodegradable, electrospun polymer microfibers. Biomacromolecules. 2010; 11(12):3624-3629. doi:10.1021/bm101078c.
  3. Chen F, Hayami JW, Amsden BG. Electrospun poly (l-lactide-co-acryloyl carbonate) fiber scaffolds with a mechanically stable crimp structure for ligament tissue engineering. Biomacromolecules. 2014; 15(5):1593-1601. doi:10.1021/bm401813j.
  4. Shin MK, Kim SI, Kim SJ. Controlled assembly of polymer nanofibers: From helical springs to fully extended. Applied Physics Letters. 2006; 88(22):223109. doi:10.1063/1.2208689.
  5. Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. Journal of applied physics. 2001; 89(5):3018-3026. doi:10.1063/1.1333035.
  6. Han T, Reneker DH, Yarin AL. Buckling of jets in electrospinning. Polymer. 2007; 48(20):6064-6076. doi:10.1016/j.polymer.2007.08.002.
  7. Tang CC, Chen JC, Long YZ, Yin HX, Sun B, Zhang HD. Preparation of curled microfibers by electrospinning with tip collector. Chinese Physics Letters. 2011; 28(5):056801. doi:10.1088/0256-307X/28/5/056801.
  8. Xin Y, Reneker DH. Hierarchical polystyrene patterns produced by electrospinning. Polymer. 2012; 53(19):4254-4261. doi:10.1016/j.polymer.2012.06.048.
  9. Zhang B, Li C, Chang M. Curled poly (ethylene glycol terephthalate)/poly (ethylene propanediol terephthalate) nanofibers produced by side-by-side electrospinning. Polymer journal. 2009; 41(4):252-253. doi:10.1295/polymj.PJ2008270.
  10. Reneker DH, Han T. Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets. MRS Online Proceedings Library (OPL). 2006; 948:0948-B07.
  11. Yu J, Qiu Y, Zha X, et al. Production of aligned helical polymer nanofibers by electrospinning. European Polymer Journal. 2008; 44(9):2838-2844. doi:10.1016/j.eurpolymj.2008.05.020.
  12. Sun B, Long Y-Z, Liu S-L, et al. 10.1039/C3NR01832F. Nanoscale. 2013; 5(15):7041-7045. doi:10.1039/C3NR01832F.
  13. Zhi-Hua Z, Yun-Ze L, Hong-Xin Y, et al. Electrospun fluorescein/polymer composite nanofibers and their photoluminescent properties. Chinese Physics B. 2012; 21(9):097805. doi:10.1088/1674-1056/21/9/097805.
  14. Gupta P, Wilkes GL. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach. Polymer. 2003; 44(20):6353-6359. doi:10.1016/S0032-3861(03)00616-5.
  15. Lin T, Wang H, Wang X. Self‐crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater. 2005; 17(22):2699-2703. doi:10.1002/adma.200500901.
  16. Chen S, Hou H, Hu P, Wendorff JH, Greiner A, Agarwal S. Polymeric nanosprings by bicomponent electrospinning. Macromolecular Materials and Engineering. 2009; 294(4):265-271. doi:10.1002/mame.200800342.
  17. Chen S, Hou H, Hu P, Wendorff JH, Greiner A, Agarwal S. Effect of different bicomponent electrospinning techniques on the formation of polymeric nanosprings. Macromolecular Materials and Engineering. 2009; 294(11):781-786. doi:10.1002/mame.200900139.
  18. Xin Y, Reneker DH. Garland formation process in electrospinning. Polymer. 2012; 53(16):3629-3635. doi:10.1016/j.polymer.2012.05.060.
  19. Kessick R, Tepper G. Microscale polymeric helical structures produced by electrospinning. Applied Physics Letters. 2004; 84(23):4807-4809. doi:10.1063/1.1762704.
  20. Xin Y, Huang Z, Yan E, Zhang W, Zhao Q. Controlling poly (p-phenylene vinylene)/poly (vinyl pyrrolidone) composite nanofibers in different morphologies by electrospinning. Applied Physics Letters. 2006; 89(5):053101. doi:10.1063/1.2236382.
  21. Wu H, Bian F, Gong RH, Zeng Y. Effects of electric field and polymer structure on the formation of helical nanofibers via coelectrospinning. Industrial & Engineering Chemistry Research.2015; 54(39):9585-90.doi:10.1021/acs.iecr.5b02882.
  22. Zhang X, Chen J, Zeng Y. Construction of helical nanofibers from cellulose acetate and a flexible component. Cellulose. 2019; 26:5187-99, doi: 10.1007/s10570-019-02478-x.
  23. Wu H, Zheng Y, Zeng Y. Fabrication of helical nanofibers via co-electrospinning. Industrial & Engineering Chemistry Research. 2015; 54(3):987-93, doi: 10.1021/ie504305s.
  24. Pagliara S, Camposeo A, Cingolani R, Pisignano D. Hierarchical assembly of light-emitting polymer nanofibers in helical morphologies. Applied Physics Letters. 2009; 95(26):263301. doi:10.1063/1.3275727.
  25. Lee CC, Grenier C, Meijer EW, Schenning AP. Preparation and characterization of helical self-assembled nanofibers. Chem Soc Rev. 2009; 38(3):671-83. doi: 10.1039/b800407m.