Factors Associated with Non-Unions of Fifth Metatarsal Fractures

Document Type : RESEARCH PAPER

Authors

1 Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, MA, USA

2 Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, MA, USA - Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Newton Wellesley Hospital, Harvard Medical School, MA, USA

10.22038/abjs.2025.81228.3708

Abstract

Objectives: Metatarsal fractures account for 5-6% of all fractures presenting to emergency care centers 
with 68% being fifth metatarsal (5MT) fractures. While most heal uneventfully, non -union is one of the 
most common complications regardless of treatment modality. Predicting the risk for non-union would 
potentially change treatment decisions thus lowering burden on patients and the healthcare system. 
The aim of this study was to identify factors associated with non -union in 5MT fractures.
Methods: In this retrospective case-control study, 731 patients met inclusion criteria. Radiographs and clinical 
documentation were utilized to determine fracture characteristics and final healing status. 547 were assigned to the 
union group and 184 to the non-union group. Patients’ data were gathered and analyzed using machine learning 
methods, as well as Mann-Whitney U, Pearson R chi-square test, and multivariable logistic regression analysis. 
P<0.05 was considered statistically significant.
Results: The overall radiographic non-union rate was 25.2%. The highest incidence of non-union was observed for 
Zone 3 fractures (31.2%). Fracture displacement (P=0.03) was found to have an independent correlation with 
healing. Several chronic conditions such as osteoporosis (P=0.03), irritable bowel syndrome (P=0.01), 
cardiovascular disease (P=0.01) and sleep apnea (P=0.03), were found to have an independent correlation with 
healing. Beta-blockers (P=0.047) and topical steroids (P=0.04) were also found to be associated with 5MT nonunion.
Conclusion: In this study, we identified several non-traditional factors associated with 5MT fracture non-union that 
warrant further consideration and may assist clinicians during the decision-making process. The relationship 
between non-fracture related factors with non-union needs to be further examined via larger clinical studies before 
causality can be determined and designation of those variables as risk factors.
 Level of evidence: III

Keywords

Main Subjects


  1. Kane JM, Sandrowski K, Saffel H, Albanese A, Raikin SM, Pedowitz DI. The Epidemiology of Fifth Metatarsal Fracture. Foot Ankle Spec. 2015; 8(5):354-359. doi:10.1177/1938640015569768.
  2. Wang Y, Gan X, Li K, Ma T, Zhang Y. Comparison of operative and non-operative management of fifth metatarsal base fracture: A meta-analysis. PLOS ONE. 2020; 15(8):e0237151. doi:10.1371/journal.pone.0237151.
  3. Bowes J, Buckley R. Fifth metatarsal fractures and current treatment. World J Orthop. 2016; 7(12):793-800. doi:10.5312/wjo.v7.i12.793.
  4. Petrisor BA, Ekrol I, Court-Brown C. The epidemiology of metatarsal fractures. Foot Ankle Int. 2006; 27(3):172-174. doi:10.1177/107110070602700303.
  5. Cheung CN, Lui TH. Proximal Fifth Metatarsal Fractures: Anatomy, Classification, Treatment and Complications. Arch Trauma Res. 2016; 5(4). doi:10.5812/atr.33298.
  6. Smith JW, Arnoczky SP, Hersh A. The Intraosseous Blood Supply of the Fifth Metatarsal: Implications for Proximal Fracture Healing. Foot Ankle. 1992; 13(3):143-152. doi:10.1177/107110079201300306.
  7. Kasai T, Nakamura T, Iwasawa M, et al. Factors affecting bone union after distal shortening oblique osteotomy of the lesser metatarsals. Mod Rheumatol. 2020; 30(3):502-508. doi:10.1080/14397595.2019.1626972.
  8. Lawrence SJ, Botte MJ. Jones’ fractures and related fractures of the proximal fifth metatarsal. Foot Ankle. 1993; 14(6):358-365. doi:10.1177/107110079301400610.
  9. Zwitser EW, Breederveld RS. Fractures of the fifth metatarsal; diagnosis and treatment. Injury. 2010; 41(6):555-562. doi:10.1016/j.injury.2009.05.035.
  10. Buuren S van, Groothuis-Oudshoorn K. mice : Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011; 45(3). doi:10.18637/jss.v045.i03.
  11. Little RJA, Rubin DB, eds. Statistical Analysis with Missing Data. 3st ed. Wiley; 2020.
  12. Thevendran G, Wang C, Pinney SJ, Penner MJ, Wing KJ, Younger ASE. Nonunion Risk Assessment in Foot and Ankle Surgery: Proposing a Predictive Risk Assessment Model. Foot Ankle Int. 2015; 36(8):901-907. doi:10.1177/1071100715577789.
  13. Cakir H, Van Vliet-Koppert ST, Van Lieshout EMM, De Vries MR, Van Der Elst M, Schepers T. Demographics and outcome of metatarsal fractures. Arch Orthop Trauma Surg. 2011; 131(2):241-245. doi:10.1007/s00402-010-1164-6.
  14. Tahririan MA, Momeni A, Moayednia A, Yousefi E. Designing a prognostic scoring system for predicting the outcomes of proximal fifth metatarsal fractures at 20 weeks. Iran J Med Sci. 2015; 40(2):104-109.
  15. Ruta DJ, Parker D. Jones Fracture Management in Athletes. Orthop Clin North Am. 2020; 51(4):541-553. doi:10.1016/j.ocl.2020.06.010.
  16. Thorud JC, Mortensen S, Thorud JL, Shibuya N, Maldonado YM, Jupiter DC. Effect of Obesity on Bone Healing After Foot and Ankle Long Bone Fractures. J Foot Ankle Surg. 2017; 56(2):258-262. doi:10.1053/j.jfas.2016.11.010.
  17. Larson CM, Almekinders LC, Taft TN, Garrett WE. Intramedullary screw fixation of Jones fractures. Analysis of failure. Am J Sports Med. 2002; 30(1):55-60. doi:10.1177/03635465020300012301.
  18. Nolte P, Anderson R, Strauss E, et al. Heal rate of metatarsal fractures: A propensity-matching study of patients treated with low-intensity pulsed ultrasound (LIPUS) vs. surgical and other treatments. Injury. 2016; 47(11):2584-2590. doi:10.1016/j.injury.2016.09.023.
  19. Zura R, Watson JT, Einhorn T, et al. An inception cohort analysis to predict nonunion in tibia and 17 other fracture locations. Injury. 2017; 48(6):1194-1203. doi:10.1016/j.injury.2017.03.036.
  20. Copuroglu C, Calori GM, Giannoudis PV. Fracture non-union: Who is at risk? Injury. 2013; 44(11):1379-1382. doi:10.1016/j.injury.2013.08.003.
  21. Looney AM, Renehan JR, Dean DM, et al. Rate of Delayed Union With Early Weightbearing Following Intramedullary Screw Fixation of Jones Fractures. Foot Ankle Int. 2020; 41(11):1325-1334. doi:10.1177/1071100720938317.
  22. Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop. 2012; 83(6):653-660. doi:10.3109/17453674.2012.747054.
  23. Wu GB, Li B, Yang YF. Comparative study of surgical and conservative treatments for fifth metatarsal base avulsion fractures (type I) in young adults or athletes. J Orthop Surg. 2018; 26(1):230949901774712. doi:10.1177/2309499017747128.
  24. Valkier C, Fallat LM, Jarski R. Conservative Versus Surgical Management of Fifth Metatarsal Avulsion Fractures. J Foot Ankle Surg. 2020; 59(5):988-992. doi:10.1053/j.jfas.2020.05.003.
  25. Le M, Anderson R. Zone II and III fifth metatarsal fractures in athletes. Curr Rev Musculoskelet Med. 2017; 10(1):86-93. doi:10.1007/s12178-017-9388-5.
  26. Pettersen PM, Radojicic N, Grün W, Andresen TKM, Molund M. Proximal Fifth Metatarsal Fractures: A Retrospective Study of 834 Fractures With a Minimum Follow-up of 5 Years. Foot Ankle Int. 2022; 43(5):602-608. doi:10.1177/10711007211069123.
  27. Kowalski C, Stauch C, Callahan R, et al. Prognostic risk factors for complications associated with tibiotalocalcaneal arthrodesis with a nail. Foot Ankle Surg. 2020; 26(6):708-711. doi:10.1016/j.fas.2019.08.015.
  28. Williams GR, Bassett JHD. Thyroid diseases and bone health. J Endocrinol Invest. 2018; 41(1):99-109. doi:10.1007/s40618-017-0753-4.
  29. Brinker MR, O’Connor DP, Monla YT, Earthman TP. Metabolic and Endocrine Abnormalities in Patients With Nonunions. J Orthop Trauma. 2007; 21(8):557-570. doi:10.1097/BOT.0b013e31814d4dc6.
  30. Moore KR, Howell MA, Saltrick KR, Catanzariti AR. Risk Factors Associated With Nonunion After Elective Foot and Ankle Reconstruction: A Case-Control Study. J Foot Ankle Surg. 2017; 56(3):457-462. doi:10.1053/j.jfas.2017.01.011.
  31. Hunt KJ, Anderson RB. Fifth Metatarsal Fractures and

 

       Refractures. Oper Tech Sports Med. 2014; 22(4):305-312. doi:10.1053/j.otsm.2014.09.010.

  1. Shimasaki Y, Nagao M, Miyamori T, et al. Evaluating the Risk of a Fifth Metatarsal Stress Fracture by Measuring the Serum 25-Hydroxyvitamin D Levels. Foot Ankle Int. 2016; 37(3):307-311. doi:10.1177/1071100715617042.
  2. Wongtrakul W, Charoenngam N, Ungprasert P. The association between irritable bowel syndrome and osteoporosis: a systematic review and meta-analysis. Osteoporos Int. 2020; 31(6):1049-1057. doi:10.1007/s00198-020-05318-y.
  3. Monteban P, van den Berg J, van Hees J, Nijs S, Hoekstra H. The outcome of proximal fifth metatarsal fractures: redefining treatment strategies. Eur J Trauma Emerg Surg. 2018; 44(5):727-734. doi:10.1007/s00068-017-0863-x.
  4. Swanson CM, Shea SA, Stone KL, et al. Obstructive sleep apnea and metabolic bone disease: insights into the relationship between bone and sleep. J Bone Miner Res. 2015; 30(2):199-211. doi:10.1002/jbmr.2446.
  5. Barnds B, Heenan GM, Tarakemeh A, Mullen SM, Schroeppel JP, Vopat BG. Comparison of the Rate of Nonunion or Delayed Union in Fifth Metatarsal Fractures Receiving Anti-Inflammatory Medications. Orthop J Sports Med. 2019; 7(7_suppl5):2325967119S0032. doi:10.1177/2325967119S00326.
  6. Mitra R. Adverse Effects of Corticosteroids on Bone Metabolism: A Review. PM&R. 2011; 3(5):466-471. doi:10.1016/j.pmrj.2011.02.017.
  7. Li M, Thompson DD, Paralkar VM. Prostaglandin E2 receptors in bone formation. Int Orthop. 2007; 31(6):767-772. doi:10.1007/s00264-007-0406-x.
  8. Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Use of Oral Corticosteroids and Risk of Fractures. J Bone Miner Res. 2000; 15(6):993-1000. doi:10.1359/jbmr.2000.15.6.993.
  9. Woolf AD. An update on glucocorticoid-induced osteoporosis: Curr Opin Intern Med. 2007; 6(5):544-549. doi:10.1097/BOR.0b013e328133f5c7.
  10. McKenzie R, Reynolds JC, O’Fallon A, et al. Decreased bone mineral density during low dose glucocorticoid administration in a randomized, placebo controlled trial. J Rheumatol. 2000; 27(9):2222-2226.