1. Motififard M, Teimouri M, Shirani K, Hatami S, Yadegari M.
Prevalence of Bacterial surgical site infection in traumatic patients
undergoing orthopedic surgeries: a cross-sectional study. Int J
Burns Trauma. 2021; 11(3):191-196.
2. Katsikogianni MG, Missirlis YF. Interactions of bacteria with
specific biomaterial surface chemistries under flow conditions.
Acta Biomater. 2010; 6(3):1107-1118.
doi:10.1016/j.actbio.2009.08.006.
3. Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic
implants with emphasis on bacterial adhesion process and
techniques used in studying bacterial-material interactions.
Biomatter. 2012; 2(4):176-194. doi:10.4161/biom.22905.
4. Dong X. Surgical site infection in upper extremity fracture:
Incidence and prognostic risk factors. Medicine (Baltimore). 2022;
101(35):e30460. doi:10.1097/MD.0000000000030460.
5. Hu Q, Zhao Y, Sun B, Qi W, Shi P. Surgical site infection following
operative treatment of open fracture: Incidence and prognostic
risk factors. Int Wound J. 2020; 17(3):708-715.
doi:10.1111/iwj.13330.
6. Sadigursky D, Sousa MD, Cajaíba YGL, Martins RR, Lobão DMV.
Infectious Prophylaxis with Intrawound Vancomycin Powder in
Orthopedic Surgeries: Systematic Review with Meta-Analysis. Rev
Bras Ortop (Sao Paulo). 2019; 54(6):617-626.
doi:10.1016/j.rbo.2017.12.003.
7. Qadir R, Costales T, Coale M, Zerhusen T Jr, Joshi M, O'Toole RV.
Topical Vancomycin Powder Decreases the Proportion of
Staphylococcus aureus found in Culture of Surgical Site Infections
in Operatively Treated Fractures. J Orthop Trauma. 2021;
35(1):17-22. doi:10.1097/BOT.0000000000001855.
8. Horii C, Yamazaki T, Oka H, et al. Does intrawound vancomycin
powder reduce surgical site infection after posterior instrumented
spinal surgery? A propensity score-matched analysis. Spine J.
2018; 18(12):2205-2212. doi:10.1016/j.spinee.2018.04.015.
9. Hrynyshyn A, Simões M, Borges A. Biofilms in Surgical Site
Infections: Recent Advances and Novel Prevention and
Eradication Strategies. Antibiotics (Basel). 2022; 11(1):69.
doi:10.3390/antibiotics11010069.
10. Edmiston CE Jr, Spencer M, Leaper D. Antiseptic Irrigation as an
Effective Interventional Strategy for Reducing the Risk of Surgical
Site Infections. Surg Infect (Larchmt). 2018; 19(8):774-780.
doi:10.1089/sur.2018.156.
11. Bashyal RK, Mathew M, Bowen E, James GA, Stulberg SD. A Novel
Irrigant to Eliminate Planktonic Bacteria and Eradicate Biofilm
Superstructure With Persistent Effect During Total Hip
Arthroplasty. J Arthroplasty. 2022; 37(7S):S647-S652.
doi:10.1016/j.arth.2022.01.045.
12. PREP-IT Investigators, Sprague S, Slobogean G, et al. Skin
Antisepsis before Surgical Fixation of Extremity Fractures. N Engl
J Med. 2024; 390(5):409-420. doi:10.1056/NEJMoa2307679.
13. Papadakis M. Wound irrigation for preventing surgical site
infections. World J Methodol. 2021; 11(4):222-227.
doi:10.5662/wjm.v11.i4.222.
14. Rozis M, Evangelopoulos DS, Pneumaticos SG. Orthopedic
Implant-Related Biofilm Pathophysiology: A Review of the
Literature. Cureus. 2021; 13(6):e15634.
doi:10.7759/cureus.15634.
15. Groenen H, Bontekoning N, Jalalzadeh H, et al. Incisional Wound
Irrigation for the Prevention of Surgical Site Infection: A
Systematic Review and Network Meta-Analysis. JAMA Surg.
doi:10.1001/jamasurg.2024.0775.
16. Mueller TC, Kehl V, Dimpel R, et al. Intraoperative Wound
Irrigation for the Prevention of Surgical Site Infection after
Laparotomy: A Randomized Clinical Trial by CHIR-Net. JAMA Surg.
2024; 159(5):484-492. doi:10.1001/jamasurg.2023.7985.
17. Barnes S, Spencer M, Graham D, Johnson HB. Surgical wound
irrigation: a call for evidence-based standardization of practice.
Am J Infect Control. 2014; 42(5):525-529.
doi:10.1016/j.ajic.2014.01.012.