Trends in Orthopaedic Surgery on Patients 90 Years Old and Older 2014-2023

Document Type : RESEARCH PAPER

Authors

1 Rothman Orthopaedic Institute, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, USA

2 Rothman Orthopaedics Florida at AdventHealth, Orlando, FL, USA

10.22038/abjs.2024.82754.3768

Abstract

Objectives: The United States (US) population is aging with an increasing number of older adults over 90 years old. The primary purpose of this study is to evaluate trends in orthopaedic surgeries in patients 90 years old and greater over the past decade from 2014-2023.
Methods: Patients ≥90 years old at the time of surgery at a single orthopaedic specialty practice from 2014 through 2023 were identified. All patients that underwent nonsurgical treatment were excluded. Surgeries were categorized by musculoskeletal area and procedure type by CPT codes. Musculoskeletal areas include Shoulder, Humerus/Elbow, Forearm/Wrist, Hand/Fingers, Pelvis/Hip, Femur/Knee, Leg/Ankle, Foot/Toes, Spine, Integumentary, Nervous System, and Other.
Results: Over the last decade, 5,291 orthopaedic surgeries were performed on 4,807 patients 90 years old and older (age range 90-107 years old; 75% female). Of these patients, 91% underwent only one surgery while ≥90 years old, while the remaining underwent between two to five surgeries. The number of surgeries each year ranged from 180 to 680 with a positive correlation between year and number of surgeries and a greater than threefold increase in surgeries 2014-2023. The Pelvis and Hip were the primary musculoskeletal areas of surgery, accounting for 69% of surgeries overall, followed by femur and knee (11%) and nervous system (which includes carpal tunnel release, 5.2%). Most surgeries (69%) were for a fracture or dislocation.
Conclusion: There is an increase in volume of orthopaedic surgery on patients ≥90 years old over the last decade between 2014-2023, the majority of which were performed on the hip and pelvis and for fractures or dislocations. As older adults ≥90 years old continue to increase in the population, we project the surgical volume will continue to grow and place a large financial burden on the US healthcare system.
        Level of evidence: IV

Keywords

Main Subjects


  1. Freedman VA, Cornman JC. National Health and Aging Trends Study: Trends Dashboards. Available at: https://micda.isr.umich.edu/research/nhats-trends-dashboards/. Accessed April 24, 2024.
  2. 2023 National Population Projections Tables: Main Series. United States Census Bureau. Available at: https://www.census.gov/data/tables/2023/demo/popproj/2023-summary-tables.html. Accessed April 24, 2024.
  3. Kalainov DM, Barnard C, Walradt J. Medicare in the 21st Century: Understanding the Program to Promote Improvements. J Am Acad Orthop Surg. 2024; 32(10):427-438. doi:10.5435/jaaos-d-23-00464.
  4. Cubanski J, Neuman T. What to Know about Medicare Spending and Financing. KFF. Available at: https://www.kff.org/medicare/issue-brief/what-to-know-about-medicare-spending-and-financing/. Accessed May 12, 2024.
  5. Moreland B, Kakara R, Henry A. Trends in Nonfatal Falls and Fall-Related Injuries Among Adults Aged ≥65 Years — United States, 2012–2018. MMWR Morb Mortal Wkly Rep. 2020; 69(27):875-881. doi:10.15585/mmwr.mm6927a5.
  6. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002; 359(9319):1761-1767. doi:10.1016/s0140-6736(02)08657-9.
  7. Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury. 2006; 37(8):691-697. doi:10.1016/j.injury.2006.04.130.
  8. Borgström F, Karlsson L, Ortsäter G, et al. Fragility fractures in Europe: burden, management and opportunities. Arch Osteoporos. 2020; 15(1):59. doi:10.1007/s11657-020-0706-y.
  9. Walter N, Szymski D, Kurtz SM, et al. Femoral shaft fractures in eldery patients – An epidemiological risk analysis of incidence, mortality and complications. Injury. 2023; 54(7):110822. doi:10.1016/j.injury.2023.05.053.
  10. Walter N, Szymski D, Kurtz SM, et al. What Are the Mortality, Infection, and Nonunion Rates After Periprosthetic Femoral Fractures in the United States? Clin Orthop Relat Res. 2024; 482(3):471-483. doi:10.1097/corr.0000000000002825.
  11. Reider L, Falvey JR, Okoye SM, Wolff JL, Levy JF. Cost of U.S emergency department and inpatient visits for fall injuries in older adults. Injury. 2024; 55(2):111199. doi:10.1016/j.injury.2023.111199.
  12. Klahs KJ, Hagen M, Scanaliato J, Hettrich C, Fitzpatrick KV, Parnes N. Geriatric proximal humerus fracture operative management: a Truven Health Analytics database study (2015-2020). J Shoulder Elb Surg. 2024; 33(3):715-721. doi:10.1016/j.jse.2023.07.012.
  13. Esper GW, Meltzer-Bruhn AT, Herbosa CG, Ganta A, Egol KA, Konda SR. Defining Characteristics of Middle-Aged and Geriatric Orthopedic Trauma in New York City over a 7-Year Period. Arch Gerontol Geriatr. 2023; 112:105039. doi:10.1016/j.archger.2023.105039.
  14. Frick KD, Kung JY, Parrish JM, Narrett MJ. Evaluating the Cost‐Effectiveness of Fall Prevention Programs that Reduce Fall‐Related Hip Fractures in Older Adults. J Am Geriatr Soc. 2010; 58(1):136-141. doi:10.1111/j.1532-5415.2009.02575.x.
  15. Burge RT, Disch DP, Gelwicks S, Zhang X, Krege JH. Hip and other fragility fracture incidence in real-world teriparatide-treated patients in the United States. Osteoporos Int. 2017; 28(3):799-809. doi:10.1007/s00198-016-3888-9.
  16. Agarwal AR, Malyavko A, Gu A, et al. Can Hip and Knee Arthroplasty Surgeons Help Address the Osteoporosis Epidemic? Clin Orthop Relat Res. 2023; 481(9):1660-1668. doi:10.1097/corr.0000000000002743.
  17. Alnemer MS, Kotliar KE, Neuhaus V, Pape HC, Ciritsis BD. Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model. Cost Eff Resour Alloc. 2023; 21(1):77. doi:10.1186/s12962-023-00482-4.
  18. Beckmann J, Ferguson SJ, Gebauer M, Luering C, Gasser B, Heini P. Femoroplasty – augmentation of the proximal femur with a composite bone cement – feasibility, biomechanical properties and osteosynthesis potential. Méd Eng Phys. 2007; 29(7):755-764. doi:10.1016/j.medengphy.2006.08.006.
  19. Horbach AJ, Staat M, Pérez-Viana D, et al. Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty. Clin Biomech. 2020; 80:105104. doi:10.1016/j.clinbiomech.2020.105104.
  20. Alarkawi D, Tran TS, Chen W, et al. Health Perceptions, Multimorbidity, and New Fractures and Mortality among Patients with a Fracture. JAMA Netw Open. 2024; 7(4):e248491. doi:10.1001/jamanetworkopen.2024.8491.
  21. Kanis JA, Johansson H, McCloskey EV, et al. Previous fracture and subsequent fracture risk: a meta-analysis to update FRAX. Osteoporos Int. 2023; 34(12):2027-2045. doi:10.1007/s00198-023-06870-z.
  22. Praveen AD, Aspelund T, Ferguson SJ, et al. Refracture and mortality risk in the elderly with osteoporotic fractures: the AGES-Reykjavik study. Osteoporos Int. 2024; 35(7):1231-1241. doi:10.1007/s00198-024-07096-3.
  23. Rantalaiho IK, Laaksonen I, Kostensalo J, Ekman EM, Ryösä AJ, Äärimaa VO. Mortality and subsequent fractures of patients with olecranon fractures compared to other upper extremity osteoporotic fractures. Shoulder Elbow. 2022; 16(2):186-192. doi:10.1177/17585732221124301.
  24. Ratnasamy PP, Rudisill KE, Oghenesume OP, Riedel MD, Grauer JN. Risk of Contralateral Hip Fracture Following Initial Hip Fracture among Geriatric Fragility Fracture Patients. J Am Acad Orthop Surg Glob Res Rev. 2023; 7(7):e23.00001. doi:10.5435/jaaosglobal-d-23-00001.
  1. Eastell R, Reid DM, Compston J, et al. Secondary prevention of osteoporosis: when should a non‐vertebral fracture be a trigger for action? QJM. 2001; 94(11):575-597. doi:10.1093/qjmed/94.11.575.
  2. Bhat SB, Ilyas AM. Economic Analysis of Bisphosphonate Use after Distal Radius Fracture for Prevention of Hip Fracture. Arch Bone Jt Surg. 2017; 5(6):380-383. doi:10.22038/abjs.2017.20386.1527.
  3. American Orthopaedic Association’s Own the Bone. Available at: https://www.ownthebone.org/.2024.
  4. So E, Juels C, Scott RT, Sietsema DL. A Comparison of Ankle Fractures Relative to Other Fragility Fractures: A Review and Analysis of the American Orthopaedic Association’s own the Bone Database. Foot Ankle Int. 2023; 44(9):879-887. doi:10.1177/10711007231178536.
  5. Kadri A, Binkley N, Daffner SD, Anderson PA. Fracture in Patients with Normal Bone Mineral Density. J Bone Jt Surg. 2023; 105(2):128-136. doi:10.2106/jbjs.22.00012.
  6. Tahririan MA, Motififard M, Omidian A, Aghdam HA, Esmaeali A. Relationship between Bone Mineral Density and Serum Vitamin D with Low Energy Hip and Distal Radius Fractures: A Case-Control Study. Arch Bone Jt Surg. 2017; 5(1):22-27. doi:10.22038/abjs.2016.7936.
  7. Srinivasan Y, Briano J, Czaja S, et al. Elective Surgery Trends and Outcomes of Nonagenarians and Centenarians in Otolaryngology–Head and Neck Surgery: A NSQIP Study. Laryngoscope. 2024; 134(9):3989-3996. doi:10.1002/lary.31446.
  8. Irojah B, Bell T, Grim R, Martin J, Ahuja V. Are They Too Old for Surgery? Safety of Cholecystectomy in Superelderly Patients (≥ Age 90). Perm J. 2017; 21(2):16-013. doi:10.7812/tpp/16-013.
  9. Oichi T, Oshima Y, Matsui H, Fushimi K, Tanaka S, Yasunaga Can Elective Spine Surgery Be Performed Safely Among Nonagenarians?: Analysis of a National Inpatient Database in Japan. Spine (Phila Pa 1976). 2019; 44(5): E273-E281. doi:10.1097/brs.0000000000002842.
  10. Morreim H, Antiel RM, Zacharias DG, Hall DE. Should Age Be a Basis for Rationing Health Care? Virtual Mentor. 2014; 16(5):339-347. doi:10.1001/virtualmentor.2014.16.05.ecas2-1405.