Quantitative Analysis of Scapular Winging Using Moire Topography

Document Type : RESEARCH PAPER

Authors

1 Columbia University Medical Center, Department of Orthopedic Surgery, New York, NY, USA

2 Columbia University, Department of Biomedical Engineering, New York, NY, USA

Abstract

Objectives: Moire Topography (MT) is a non-invasive technique that uses patterned light projection and 
has been used to qualitatively characterize scapular winging. The purpose of the present study was to 
quantitatively characterize scapular winging using a novel method of MT.
Methods: A total of 20 shoulders in ten healthy subjects were analyzed. The mean age for subjects was 27.9 ± 1.0 
years and mean BMI was 22.8 ± 2.8. Two scenarios were used to simulate scapular winging: Group 1) the handbehind-back (HBB) position and Group 2) weighted scaption after a muscle fatigue protocol. A calibration object 
was used to validate the MT method. This was followed by a use of a control object with known dimensions (OKD) 
to evaluate subjects. The measured height (z) of the OKD with MT, as determined by the known dimensions of the 
OKD, was then compared to the scapula winging in Groups 1 and 2. Scapular winging was characterized by 
measuring the height or prominence (z) of the scapula.
Results: There were significant differences between the baseline scapular measurements and scapular winging 
measurements in both Group 1, 4.0 cm ± 1.3 (P=0.0004), and Group 2, 3.7 ± 1.6 (P=0.0178). Scapular winging was 
most prominent with the hand in the highest position on the back in Group 1 and at lower degrees of scaption (<60 
degrees) in Group 2.
Conclusion: Quantitative characterization of scapular winging was achieved using a novel method using MT. 
Scapular winging was found at lower degrees of shoulder elevation. Future applications of this technique should 
focus on characterizing scapular winging in multiple planes in real-time and in patients with known shoulder 
pathology.
 Level of evidence: III

Keywords

Main Subjects


1. Kibler WB, Ludewig PM, McClure PW, Michener LA, Bak K, 
Sciascia AD. Clinical implications of scapular dyskinesis in 
shoulder injury: the 2013 consensus statement from the 
'Scapular Summit'. Br J Sports Med. 2013; 47(14):877-885. 
doi:10.1136/bjsports-2013-092425.
2. Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. 
Comparison of 3-dimensional scapular position and 
orientation between subjects with and without shoulder 
impingement. J Orthop Sports Phys Ther. 1999; 29(10):574-
586. doi:10.2519/jospt.1999.29.10.574.
3. Paletta GA Jr, Warner JJ, Warren RF, Deutsch A, Altchek DW. 
Shoulder kinematics with two-plane x-ray evaluation in 
patients with anterior instability or rotator cuff tearing. J 
Shoulder Elbow Surg. 1997; 6(6):516-527. 
doi:10.1016/s1058-2746(97)90084-7.
4. Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. 
Scapulothoracic motion in normal shoulders and shoulders 
with glenohumeral instability and impingement syndrome. A 
study using Moiré topographic analysis. Clin Orthop Relat 
Res. 1992 ;( 285):191-199.
5. Leroux JL, Micallef JP, Bonnel F, Blotman F. Rotation-abduction 
analysis in 10 normal and 20 pathologic shoulders. Elite 
system application. Surg Radiol Anat. 1992; 14(4):307-313. 
doi:10.1007/BF01794756.
6. Ozaki J. Glenohumeral movements of the involuntary inferior 
and multidirectional instability. Clin Orthop Relat Res. 1989 ;( 
238):107-111.
7. Uhl TL, Kibler WB, Gecewich B, Tripp BL. Evaluation of clinical 
assessment methods for scapular dyskinesis. Arthroscopy. 
2009; 25(11):1240-1248. doi:10.1016/j.arthro.2009.06.007.
8. Hickey BW, Milosavljevic S, Bell ML, Milburn PD. Accuracy and 
reliability of observational motion analysis in identifying 
shoulder symptoms. Man Ther. 2007; 12(3):263-270. 
doi:10.1016/j.math.2006.05.005.
9. McClure P, Tate AR, Kareha S, Irwin D, Zlupko E. A clinical 
method for identifying scapular dyskinesis, part 1: reliability. 
J Athl Train. 2009; 44(2):160-164. doi:10.4085/1062-6050-
44.2.160.
10. Bey MJ, Zauel R, Brock SK, Tashman S. Validation of a new 
model-based tracking technique for measuring threedimensional, in vivo glenohumeral joint kinematics. J 
Biomech Eng. 2006;128(4):604-609. doi:10.1115/1.2206199.
11. Bey MJ, Kline SK, Zauel R, Lock TR, Kolowich PA. Measuring 
dynamic in-vivo glenohumeral joint kinematics: technique 
and preliminary results. J Biomech. 2008; 41(3):711-714. 
doi:10.1016/j.jbiomech.2007.09.029.
12. McClure PW, Michener LA, Sennett BJ, Karduna AR. Direct 3-
dimensional measurement of scapular kinematics during 
dynamic movements in vivo. J Shoulder Elbow Surg. 2001; 
10(3):269-277. doi:10.1067/mse.2001.112954.
13. Wu F, Kachooei AR, Ebrahimzadeh MH, et al. Bilateral ArmAbduction Shoulder Radiography to Determine the 
Involvement of the Scapulothoracic Motion in Frozen 
Shoulder. Arch Bone Jt Surg. 2018; 6(3):225-232.
14. Nicholson KF, Richardson RT, Miller F, Richards JG. 
Determining 3D scapular orientation with scapula models 
and biplane 2D images. Med Eng Phys. 2017; 41:103-108. 
doi:10.1016/j.medengphy.2017.01.012.
15. Porto F, Gurgel JL, Russomano T, Farinatti Pde T. Moiré 
topography: characteristics and clinical application. Gait 
Posture. 2010; 32(3):422-424. 
doi:10.1016/j.gaitpost.2010.06.017.
16. Daruwalla JS, Balasubramaniam P. Moiré topography in 
scoliosis. Its accuracy in detecting the site and size of the 
curve. J Bone Joint Surg Br. 1985; 67(2):211-213. 
doi:10.1302/0301-620X.67B2.3980527.
17. Inokuchi I. Nihon Jibiinkoka Gakkai Kaiho. 1992; 95(5):715-
725. doi:10.3950/jibiinkoka.95.715.
18. Panchón-Ruiz A, Jornet-Carrillo V, Sanchez Del Campo F. 
Palate vault morphology in Down syndrome. J Craniofac 
Genet Dev Biol. 2000; 20(4):198-200.
19. Koralewska A, Domagalska-Szopa M, Siwiec J, Szopa A. The 
Influence of External Breast Prostheses on the Body Postures 
of Women Who Have Undergone Mastectomies. J Clin Med. 
2023; 12(7):2745. doi:10.3390/jcm12072745.
20. Mrozkowiak M, Stępień-Słodkowska M. The impact of a 
school backpack's weight, which is carried on the back of a 7-
year-old students of both sexes, on the features of body 
posture in the frontal plane. BMC Sports Sci Med Rehabil. 2022; 14(1):57. doi:10.1186/s13102-022-00448-8. 21. Suh DH, Lee YJ, Kim DH, Lee SJ, Shin MK. Objective assessment 
of facial laxity changes after monopolar radiofrequency 
treatment by using moiré topography. J Cosmet Laser Ther. 
2021; 23(7-8):170-175. 
doi:10.1080/14764172.2022.2048671.
22. Janssen SJ, Jayakumar P, Ter Meulen DP, van Deurzen DFP, 
Ring D. Quantitative 3-dimensional Computerized 
Tomography Modeling of Isolated Greater Tuberosity 
Fractures with and without Shoulder Dislocation. Arch Bone 
Jt Surg. 2019; 7(1):24-32.
23. Tsai NT, McClure PW, Karduna AR. Effects of muscle fatigue 
on 3-dimensional scapular kinematics. Arch Phys Med 
Rehabil. 2003; 84(7):1000-1005. doi:10.1016/s0003-
9993(03)00127-8.
24. Mallon WJ, Herring CL, Sallay PI, Moorman CT, Crim JR. Use of 
vertebral levels to measure presumed internal rotation at the 
shoulder: a radiographic analysis. J Shoulder Elbow Surg. 
1996; 5(4):299-306. doi:10.1016/s1058-2746(96)80057-7.
25. Makin GJ, Brown WF, Ebers GC. C7 radiculopathy: importance 
of scapular winging in clinical diagnosis. J Neurol Neurosurg 
Psychiatry. 1986; 49(6):640-644. doi:10.1136/jnnp.49.6.640.
26. Weon JH, Kwon OY, Cynn HS, Lee WH, Kim TH, Yi CH. Realtime visual feedback can be used to activate scapular upward 
rotators in people with scapular winging: an experimental 
study. J Physiother. 2011; 57(2):101-107. 
doi:10.1016/S1836-9553(11)70020-0.
27. O'Shea A, Kelly R, Williams S, McKenna L. Reliability and 
Validity of the Measurement of Scapular Position Using the 
Protractor Method. Phys Ther. 2016; 96(4):502-510. 
doi:10.2522/ptj.20150144.
28. Bourne DA, Choo AM, Regan WD, MacIntyre DL, Oxland TR. 
The placement of skin surface markers for non-invasive 
measurement of scapular kinematics affects accuracy and 
reliability. Ann Biomed Eng. 2011; 39(2):777-785. 
doi:10.1007/s10439-010-0185-1.