Indirect Decompression in Lumbar Degenerative Pathology: Analysis of Imaging Changes at 48 Hours with One-year Follow-up

Document Type : RESEARCH PAPER

Authors

1 Orthopedic Surgery British Hospital of Buenos Aires, Buenos Aires, Argentina

2 Scientific Advisory Board, Hospital Británico de Buenos Aires, Buenos Aires, Argentina

Abstract

Objectives: Investigate the immediate resonance magnetic image changes undergone by the lumbar 
canal after indirect decompression and compare them at one-year post-intervention. We also 
investigate the clinical outcome of indirect decompression at one-year follow-up.
Methods: Imaging changes in patients who underwent indirect lumbar decompression and percutaneous posterior 
fixation were analyzed with one-year follow-up. Radiographic measurements were performed preoperatively and 
postoperatively (at one year), and the area of lumbar canal occupation and yellow ligament by nuclear magnetic 
resonance was compared preoperatively, at 48 hours post-surgery, and at one year. Radiographic measurements 
included disc height, foraminal height, total lumbar lordosis, and segmental lordosis. The VAS lumbar and lower 
limb scales and the Oswestry Disability Index (ODI) were used to assess clinical outcomes.
Results: A total of 21 male and 23 female patients underwent indirect decompression at 64 lumbar levels. A 
significant improvement was observed in the clinical evaluation of all patients’ post-surgery (p < 0.001) in all 
radiographic parameters. There was an immediate increase in the lumbar canal at 48 hours (p < 0.001), which 
continued to increase at one year post-intervention (p < 0.05). The yellow ligament occupation area decreased at 
48 hours (p < 0.001) and continued to decrease until one year (p < 0.01). Four complications were recorded, one of 
which was a posterior tract infection requiring open decompression.
Conclusion: Indirect decompression for degenerative lumbar disease provided successful clinical outcomes, 
including indirect expansion of the dural sac at 48 hours post-procedure, with progressive increase in the lumbar 
canal area at one-year follow-up.
 Level of evidence: III

Keywords

Main Subjects


  1. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976). 2010; 35(25):2224-31. doi: 10.1097/BRS.0b013e3181ee6bd4.
  2. Allain J, Dufour T. Anterior lumbar fusion techniques: ALIF, OLIF, DLIF, LLIF, IXLIF. Orthop Traumatol Surg Res. 2020; 106(1S):S149-S157. doi: 10.1016/j.otsr.2019.05.024.
  3. Verbiest H. A radicular syndrome from developmental narrowing of the lumbar vertebral canal. J Bone Joint Surg Br. 1954; 36-B (2):230-7. doi:10.1302/0301-620X.36B2.230.
  4. Costa F, Sassi M, Cardia A, et al. Degenerative lumbar spinal stenosis: analysis of results in a series of 374 patients treated with unilateral laminotomy for bilateral microdecompression. J Neurosurg Spine. 2007; 7(6):579-86. doi:10.3171/SPI-07/12/579.
  5. Weber C, Giannadakis C, Rao V, et al. Is There an Association Between Radiological Severity of Lumbar Spinal Stenosis and Disability, Pain, or Surgical Outcome? A Multicenter Observational Study. Spine (Phila Pa 1976). 2016; 41(2):E78-83. doi:10.1097/BRS.0000000000001166.
  6. Airaksinen O, Herno A, Turunen V, Saari T, Suomlainen O. Surgical outcome of 438 patients treated surgically for lumbar spinal stenosis. Spine (Phila Pa 1976). 1997; 22(19):2278-82. doi:10.1097/00007632-199710010-00016.
  7. Turner JA, Ersek M, Herron L, Deyo R. Surgery for lumbar spinal stenosis. Attempted meta-analysis of the literature. Spine (Phila Pa 1976). 1992; 17(1):1-8. doi:10.1097/00007632-199201000-00001.
  8. Cho JH, Joo YS, Lim C, Hwang CJ, Lee DH, Lee CS. Effect of one- or two-level posterior lumbar interbody fusion on global sagittal balance. Spine J. 2017; 17(12):1794-1802. doi: 10.1016/j.spinee.2017.05.029.
  9. Ghandhari H, Ameri Mahabadi M, Nikouei F, et al. The Role of Spinopelvic Parameters in Clinical Outcomes of Spinal Osteotomies in Patients with Sagittal Imbalance. Arch Bone Jt Surg. 2018; 6(4):324-330.
  10. Limthongkul W, Tanasansomboon T, Yingsakmongkol W, Tanaviriyachai T, Radcliff K, Singhatanadgige W. Indirect Decompression Effect to Central Canal and Ligamentum Flavum After Extreme Lateral Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion. Spine (Phila Pa 1976). 2020; 45(17):E1077-E1084. doi:10.1097/BRS.0000000000003521.
  11. Ebrahimi Takamjani I, Ezzati K, Khani S, Sarrafzadeh J, Tabatabaiee A. Reliability of Ultrasound Findings in Patients with Lumbar Multifidus Myofascial Pain Syndrome. Arch Bone Jt Surg. 2023; 11(4):248-255. doi: 10.22038/ABJS.2022.63591.3067.
  12. Park D, Mummaneni PV, Mehra R, et al. Predictors of the need for laminectomy after indirect decompression via initial anterior or lateral lumbar interbody fusion. J Neurosurg Spine. 2020; 32(6):781-787. doi:10.3171/2019.11.SPINE19314.
  13. Nakashima H, Kanemura T, Satake K, et al. Indirect Decompression on MRI Chronologically Progresses After Immediate Postlateral Lumbar Interbody Fusion: The Results From a Minimum of 2 Years Follow-Up. Spine (Phila Pa 1976). 2019; 44(24):E1411-E1418. doi:10.1097/BRS.0000000000003180.
  14. Arnoldi CC, Brodsky AE, Cauchoix J, et al. Lumbar spinal stenosis and nerve root entrapment syndromes. Definition and classification. Clin Orthop Relat Res. 1976 :( 115):4-5.
  15. Anderson DG, Limthongkul W, Sayadipour A, et al. A radiographic analysis of degenerative spondylolisthesis at the L4-5 level. J Neurosurg Spine. 2012; 16(2):130-4. doi:10.3171/2011.10.SPINE11140.
  16. Boden SD, Wiesel SW. Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine (Phila Pa 1976).1990; 15(6):571-6. doi: 10.1097/00007632-199006000-00026.
  17. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976). 2000; 25(22):2940-52; discussion 2952. doi:10.1097/00007632-200011150-00017.
  18. Calvo-Echenique A, Cegoñino J, Perez Del Palomar A. Is there any advantage of using stand-alone cages? A numerical approach. Biomed Eng Online. 2019; 18(1):63. doi: 10.1186/s12938-019-0684-8.
  19. Zhang JD, Poffyn B, Sys G, Uyttendaele D. Are stand-alone cages sufficient for anterior lumbar interbody fusion? Orthop Surg. 2012; 4(1):11-4. doi: 10.1111/j.1757-7861.2011.00164.x.
  20. He W, He D, Sun Y, et al. Standalone oblique lateral interbody fusion vs. combined with percutaneous pedicle screw in spondylolisthesis. BMC Musculoskelet Disord. 2020;

 

        21(1):184. doi: 10.1186/s12891-020-03192-7.

  1. Yingsakmongkol W, Jitpakdee K, Kerr S, Limthongkul W, Kotheeranurak V, Singhatanadgige W. Successful Criteria for Indirect Decompression With Lateral Lumbar Interbody Fusion. Neurospine. 2022; 19(3):805-815. doi:10.14245/ns.2244058.029.
  2. Gabel BC, Hoshide R, Taylor W. An Algorithm to Predict Success of Indirect Decompression Using the Extreme Lateral Lumbar Interbody Fusion Procedure. Cureus. 2015; 7(9):e317. 2015; 7(9):e317. doi:10.7759/cureus.317.
  3. Shimizu T, Fujibayashi S, Otsuki B, Murata K, Matsuda S. Indirect decompression via oblique lateral interbody fusion for severe degenerative lumbar spinal stenosis: a comparative study with direct decompression transforaminal/posterior lumbar interbody fusion. Spine J. 2021; 21(6):963-971. doi: 10.1016/j.spinee.2021.01.025.
  4. Derman PB, Ohnmeiss DD, Lauderback A, Guyer RD. Indirect Decompression for the Treatment of Degenerative Lumbar Stenosis. Int J Spine Surg. 2021; 15(6):1066-1071. doi:10.14444/8192.
  5. Gagliardi MJ, Guiroy AJ, Camino-Willhuber G, et al. Is Indirect Decompression and Fusion More Effective than Direct Decompression and Fusion for Treating Degenerative Lumbar Spinal Stenosis With Instability? A Systematic Review and meta-Analysis. Global Spine J. 2023; 13(2):499-511. doi:10.1177/21925682221098362.
  6. Tseng SC, Lin YH, Wu YC, et al. Indirect decompression via oblique lumbar interbody fusion is sufficient for treatment of lumbar foraminal stenosis. Front Surg. 2022; 9:911514. 2022:9:911514. doi:10.3389/fsurg.2022.911514.
  7. Fujibayashi S, Kawakami N, Asazuma T, et al. Complications Associated With Lateral Interbody Fusion: Nationwide Survey of 2998 Cases During the First 2 Years of Its Use in Japan. Spine (Phila Pa 1976). 2017; 42(19):1478-1484. doi:10.1097/BRS.0000000000002139.