Slope of the Medial Tibial Plateau and the Incidence of a Medial Meniscal Tear

Document Type : RESEARCH PAPER

Authors

1 Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

2 Shiraz University of Medical Sciences, Shiraz, Iran

3 Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran- Clinical Research Development Unit, Taleghani Educational Hospital, Abadan University of Medical Sciences, Abadan, Iran

Abstract

Objectives: Previous studies of the association between tibial slope and meniscal tear have led to 
contradictory results. In this regard, the present study aimed to examine the effect of medial tibial 
plateau slope on the incidence of isolated medial meniscal tear.
Methods: This study was performed on 75 patients with a posterior horn medial meniscal tear and 150 matched 
control subjects. Two different observers evaluated the slope of the medial tibial plateau on the lateral radiographs. 
Reliability of radiographic evaluation was investigated in a pilot study using the intraclass correlation coefficient 
(ICC) test.
Results: Intra-observer reliability for the slope of the medial tibial plateau was high, with ICC values of 0.961 and 
0.957 for the first and second observers, respectively. The interobserver reliability was 0.947. The mean slope was 
10.2±3.7° in the case group and 10.1±4.4° in the control group (P=0.97). Moreover, the mean slopes of the medial 
tibial plateau were 10.3±4.1º and 10.1±4.2º in participants with tibial bone varus angles of (TBVA) < 4º and ≥ 4.2 
(P=0.77). The slope was not statistically correlated with age (r=0.074, 95% CI: -0.05−0.20, P=0.26), gender (r=0.07, 
P=0.29), BMI (r=0.02, 95% CI: -0.10−0.15, P=0.74), level of joint degeneration (r=-0.023, 95% CI: -0.11−0.15, 
P=0.73), and TBVA (r=-0.010, 95% CI: -0.14−0.12; P=0.12).
Conclusion: No significant difference was found between patients with and without an isolated meniscal tear in 
terms of the medial tibial plateau slope. These results suggest that the tibial slope may not affect the incidence of 
isolated medial meniscal tears.
 Level of evidence: III

Keywords

Main Subjects


1. Wojtys EM, Chan DB. Meniscus structure and function. Instr 
Course Lect. 2005; 54:323-330.
2. Jones JC, Burks R, Owens BD, Sturdivant RX, Svoboda SJ, 
Cameron KL. Incidence and risk factors associated with 
meniscal injuries among active-duty US military service 
members. J Athl Train. 2012; 47(1):67-73. doi: 
10.4085/1062-6050-47.1.67.
3. Baker BE, Peckham AC, Pupparo F, Sanborn JC. Review of 
meniscal injury and associated sports. Am J Sports Med. 1985; 
13(1):1-4. 
4. Keyhani S, Esmailiejah AA, Mirhoseini MS, Hosseininejad S-M, 
Ghanbari N. The Prevalence, Zone, and Type of the Meniscus 
Tear in Patients with Anterior Cruciate Ligament (ACL) 
Injury; Does Delayed ACL Reconstruction Affects the Meniscal 
Injury? Arch Bone Jt Surg. 2020; 8(3):432-438. 
doi:10.22038/abjs.2019.39084.2076.
5. Harhaji VV, Subašić S, Ninković S, Lalić I, Salamon T, Ristić V. 
The impact of combined meniscus tear on quality of life after 
anterior cruciate ligament reconstruction. Med Pregl. 2016; 
69(5-6):153-159. doi: 10.2298/mpns1606153h. 
6. Fuchs A, Kloos F, Bode G, Izadpanah K, Südkamp NP, Feucht 
MJ. Isolated revision meniscal repair–failure rates, clinical 
outcome, and patient satisfaction. BMC Musculoskelet Disord. 
2018; 19(1):1-7. doi:10.2519/jospt.2013.4295. 
7. Navali AM, Aslani H. Clinical Results of Meniscal Repair Using 
Submeniscal Horizontal Sutures. Arch Bone Jt Surg. 2015; 
3(3):179-183. doi:10.22038/abjs.2015.4302.
8. Snoeker BA, Bakker EW, Kegel CA, Lucas C. Risk factors for 
meniscal tears: a systematic review including meta-analysis. J 
Orthop Sports Phys Ther. 2013; 43(6):352-367. 
doi:10.2519/jospt.2013.4295.
9. Tejani A, Naziri Q, Grieco PW, et al. The Effects of Meniscal 
Geometry on Susceptibility for Meniscal and ACL Injury in 
Non-Arthritic Knees: A Retrospective Case-Control Study. J 
Long Term Eff Med Implants. 2018; 28(1):31-36. 
doi:10.1615/JLongTermEffMedImplants.2017020736.
10. Gaillard R, Magnussen R, Batailler C, Neyret P, Lustig S, 
Servien E. Anatomic risk factor for meniscal lesion in 
association with ACL rupture. J Orthop Surg Res. 2019; 
14(1):1-10. doi: 10.1186/s13018-019-1281-z.
11. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP. 
Posterior tibial slope and further anterior cruciate ligament 
injuries in the anterior cruciate ligament-reconstructed 
patient. Am J Sports Med. 2013; 41(12):2800-4. 
doi:10.1177/0363546513503288.
12. Meister K, Talley MC, Horodyski MB, Indelicato PA, Hartzel JS, 
Batts J. Caudal slope of the tibia and its relationship to 
noncontact injuries to the ACL. Am J Knee Surg. 1998; 
11(4):217-9. 
13. Waiwaiole A, Gurbani A, Motamedi K, et al. Relationship of 
ACL Injury and Posterior Tibial Slope With Patient Age, Sex, 
and Race. Orthop J Sports Med. 2016; 4(11). 
doi:10.1177/2325967116672852.
14. Alici T, Esenyel CZ, Esenyel M, Imren Y, Ayanoglu S, Cubuk R. 
Relationship between meniscal tears and tibial slope on the 
tibial plateau. Eurasian J Med. 2011; 43(3):146. 
doi:10.5152/eajm.2011.35.
15. Lee JJ, Choi YJ, Shin KY, Choi CH. Medial meniscal tears in 
anterior cruciate ligament-deficient knees: effects of 
posterior tibial slope on medial meniscal tear. Knee Surg 
Relat Res. 2011; 23(4):227-30. 
doi:10.5792/ksrr.2011.23.4.227.
16. Kellgren JH, Lawrence JS. Radiological assessment of osteoarthrosis. Ann Rheum Dis. 1957; 16(4):494-502. doi:10.1136/ard.16.4.494.
17. Samuelsen BT, Aman ZS, Kennedy MI, et al. Posterior medial 
meniscus root tears potentiate the effect of increased tibial 
slope on anterior cruciate ligament graft forces. Am J Sports 
Med. 2020; 48(2):334-340. doi: 
10.1177/0363546519889628.
18. Markl I, Zantop T, Zeman F, Seitz J, Angele P. The effect of 
tibial slope in acute ACL-insufficient patients on concurrent 
meniscal tears. Arch Orthop Trauma Surg. 2015; 
135(8):1141-1149. doi: 10.1007/s00402-015-2247-1.
19. Song G-y, Liu X, Zhang H, et al. Increased medial meniscal 
slope is associated with greater risk of ramp lesion in 
noncontact anterior cruciate ligament injury. Am J Sports 
Med. 2016; 44(8):2039-2046. doi: 
10.1177/0363546516640516.
20. Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey 
G. Preoperative laxity in ACL-deficient knees increases with 
posterior tibial slope and medial meniscal tears. Knee Surg 
Sports Traumatol Arthrosc. 2019; 27(2):564-572. doi: 
10.1007/s00167-018-5180-3.
21. Tradati D, Mouton C, Urhausen A, Beel W, Nührenbörger C, 
Seil R. Lateral meniscal slope negatively affects postoperative anterior tibial translation at 1 year after primary 
anterior cruciate ligament reconstruction. Knee Surg Sports 
Traumatol Arthrosc. 2020; 28(11):3524-3531. 
doi:10.1007/s00167-020-06021-5.
22. Wang X, Jing L, Wang X, et al. Effects of medial meniscal slope 
and medial posterior tibial slope on the locations of meniscal 
tears: A retrospective observational study. Medicine 
(Baltimore). 2020; 99(47). doi: 
10.1097/MD.0000000000023351.