MicroRNAs in Aseptic Loosening of Prosthesis: Pathophysiology and Potential Therapeutic Approaches

Document Type : SCOPING REVIEW

Authors

1 Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Orthopedics, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Babol University of Medical Sciences, Babol, Iran

4 Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Objectives: Aseptic loosening (AL) is one of the leading causes of total joint arthroplasty (TJA) revision. 
Discovering the roles of microRNAs (miRNA/miR) in ontogenesis and osteolysis has attracted more 
attention to diagnosing and treating bone disorders. This review aimed to summarize miRNA biogenesis 
and describe the involvement of miRNAs in AL of implants.
Methods: A detailed search was carried out on scientific search engines, including Google Scholar, Web of Science, 
and PubMed, to find appropriate papers related to subjects. The search process was performed using the following 
keywords: "Implant", "miRNAs", "Wear particles", "Osteoclasts", "Total joint replacement", and "Osteolytic diseases".
Results: miRNAs play an essential role in the regulation of gene expression. AL is associated with several 
pathologic properties, including wear particle-induced persistent inflammatory response, unbalanced 
osteoclastogenesis, abnormal osteoblast differentiation, and maturation. Recent researches have revealed that 
these pathological events are closely associated with miRNA deregulation, confirming the relationship between 
miRNA and AL of prostheses.
Conclusion: With the results of the new approaches to target miRNA, the essential role of miRNA is further defined. 
Understanding the mechanisms of miRNAs and related signaling pathways in the pathophysiology of AL will help 
scientists illuminate novel therapeutic strategies and specific targeted drugs.
 Level of evidence: V

Keywords

Main Subjects


  1. Sayan A, Kopiec A, Shahi A, Chowdhry M, Bullock M, Oliashirazi A. The Expanding Role of Biomarkers in Diagnosing Infection in Total Joint Arthroplasty: A Review of Current Literature. Arch Bone Jt Surg. 2021; 9:33-43 doi: 10.22038/abjs.2020.42989.2169.

2     Kaya C, Seyman CC,Kaya Y. Determination of the effect of preoperative knee joint function on postoperative quality of life in patients with total knee arthroplasty. J Orthop Res.2024. doi: 10.1002/jor.25876.

3     Djahani O, Rainer S, Pietsch M,Hofmann S. Systematic analysis of painful total knee prosthesis, a diagnostic algorithm. Arch Bone Jt Surg. 2013; 1:48-52.

4     Abu-Amer Y, Darwech I,Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007; 9 Suppl 1(Suppl 1):S6. doi: 10.1186/ar2170.

5     Dyskova T, Kriegova E, Slobodova Z, et al. Inflammation time-axis in aseptic loosening of total knee arthroplasty: A preliminary study. PLoS One. 2019; 14(8):e0221056. doi: 10.1371/journal.pone.0221056.

6     Pakos EE, Paschos NK,Xenakis TA. Long Term Outcomes of Total Hip Arthroplasty in Young Patients under 30. Arch Bone Jt Surg. 2014; 2:157-162.

7     Hodges NA, Sussman EM,Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials.2021:278:121127. doi: 10.1016/j.biomaterials.2021.121127.

8     Purdue PE, Koulouvaris P, Nestor BJ,Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J.2006; 2(2):102-13. doi: 10.1007/s11420-006-9003-6.

9     Tahamtan A, Teymoori-Rad M, Nakstad B,Salimi V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front Immunol.2018:9:1377. doi: 10.3389/fimmu.2018.01377.

10   Felekkis K, Touvana E, Stefanou C,Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia .2010; 14:236-240.

11   Gámez B, Rodriguez-Carballo E,Ventura FJJome. MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol.2014; 52(3):R179-97. doi: 10.1530/JME-13-0294.

12   Shin VY,Chu K-M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol.2014; 20(30):10432-9. doi: 10.3748/wjg.v20.i30.10432.

13   Ying SY, Chang DC,Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol.2008; 38(3):257-68. doi: 10.1007/s12033-007-9013-8.

14   Ramalingam P, Palanichamy JK, Singh A, et al. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA.2014; 20(1):76-87. doi: 10.1261/rna.041814.113.

15   Tanzer A,Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004; 339(2):327-35. doi: 10.1016/j.jmb.2004.03.065.

16   Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.2004; 23(20):4051-60. doi: 10.1038/sj.emboj.7600385.

17   Medley JC, Panzade G,Zinovyeva AY. microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA.2021; 12(3):e1627. doi: 10.1002/wrna.1627.

18   Zeng L, Jiang H-L, Ashraf GM, Li Z-R,Liu RJNRR. MicroRNA and mRNA profiling of cerebral cortex in a transgenic mouse model of Alzheimer's disease by RNA sequencing. Neural Regen Res.2021; 16(10):2099-2108. doi: 10.4103/1673-5374.308104.

19   von Knoch M, Wedemeyer C, Pingsmann A, et al. The decrease of particle-induced osteolysis after a single dose of bisphosphonate. Biomaterials 2005; 26:1803-1808. doi: 10.1016/j.biomaterials.2004.06.010.

20   Kandahari AM, Yang X, Laroche KA, Dighe AS, Pan D, Cui Q. A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res.2016:4:16014. doi: 10.1038/boneres.2016.14.

21   Fokter S, eds. Recent advances in arthroplasty. 1st ed. IntechOpen; 2012.

22   Wang S, Deng Z, Ma Y, et al. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci .2020; 16:2675-2691. doi: 10.7150/ijbs.46627.

23   Qiu J, Peng P, Xin M, et al. ZBTB20-mediated titanium particle-induced peri-implant osteolysis by promoting macrophage inflammatory responses. Biomater Sci.2020; 8(11):3147-3163. doi: 10.1039/d0bm00147c.

24   Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol. 2018; 59:391-412. doi: 10.1016/j.intimp.2018.03.002.

25   Maitra R, Clement CC, Crisi GM, Cobelli N,Santambrogio L. Immunogenecity of modified alkane polymers is mediated through TLR1/2 activation. PLoS One. 2008; 3:e2438. doi: 10.1371/journal.pone.0002438.

26   Ingham E,Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005; 26(11):1271-86. doi: 10.1016/j.biomaterials.2004.04.035.

27   Hameister R, Lohmann CH, Dheen ST, Singh G,Kaur C. The effect of TNF-α on osteoblasts in metal wear-induced periprosthetic bone loss. Bone Joint Res. 2020; 9:827-839. doi: 10.1302/2046-3758.911.bjr-2020-0001.r2.

28   Swanson KV, Deng M,Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol.2019; 19(8):477-489. doi: 10.1038/s41577-019-0165-0.

29   Meng J, Zhou C, Hu B, et al. Stevioside prevents wear particle-induced osteolysis by inhibiting osteoclastogenesis and inflammatory response via the suppression of TAK1 activation. Front Pharmacol.2018:9:1053. doi: 10.3389/fphar.2018.01053.

30   Terkawi MA, Kadoya K, Takahashi D, et al. Identification of IL-27 as potent regulator of inflammatory osteolysis associated with vitamin E-blended ultra-high molecular weight polyethylene debris of orthopedic implants. Acta Biomater.2019:89:242-251. doi: 10.1016/j.actbio.2019.03.028.

31   Hensley AP,McAlinden A. The role of microRNAs in bone development. Bone. 2021; 143:115760. doi: 10.1016/j.bone.2020.115760.

32   Chen J, Qiu M, Dou C, Cao Z,Dong SJDDR. MicroRNAs in bone balance and osteoporosis. Drug Dev Res.2015; 76(5):235-45. doi: 10.1002/ddr.21260.

33   Hosseinpour S, He Y, Nanda A,Ye Q. MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration. Calcif Tissue Int.2019; 105(3):223-238. doi: 10.1007/s00223-019-00571-8.

34   Lam J, Takeshita S, Barker JE, et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest.2000; 106(12):1481-8. doi: 10.1172/JCI11176.

35   van Wijnen AJ, van de Peppel J, van Leeuwen JP, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep. 2013; 11(2):72-82. doi: 10.1007/s11914-013-0143-6.

36   Kagiya T,Nakamura S. Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodontal Res. 2013; 48:373-385 doi: 10.1111/jre.12017.

37   Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem. 2010; 109:866-875. doi: 10.1002/jcb.22228.

38   Inoue K, Ng C, Xia Y,Zhao B. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs. Front Cell Dev Biol. 2021; 9:651161. doi: 10.3389/fcell.2021.651161.

39   Groven RVM, van Koll J, Poeze M, Blokhuis TJ,van Griensven M. miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview. Front Surg. 2021; 8:786564. doi: 10.3389/fsurg.2021.786564.

40   Gao H,Wang X. Serum miRNA‑142 and BMP‑2 are markers of recovery following hip replacement surgery for femoral neck fracture. Exp Ther Med.2020; 20(5):105. doi: 10.3892/etm.2020.9235.

41   Li RW, Patel HR, Perriman D, Wang J, Smith PN. MicroRNA Profiling in Wear Particle Associated Osteolysis In Orthopaedic Proceedings. Bone & Joint. 2014; 96(SUPP11):43-43.

42   Jiang Y, Ma H, Zhang Q, et al. Integrative analyses reveal RNA regulatory network in Ti particles induced inflammation. European Journal of Inflammation. 2021; 19:20587392211044863.

43   Zheng DZ, Bu YM, Wang L,Liu J. MicroRNA-130b Promotes Wear Particle-Induced Osteolysis via Downregulating Frizzled-Related Protein (FRZB). Curr Neurovasc Res. 2017; 14:32-38 .doi: 10.2174/1567202614666161123112409.

44   Zheng D-Z, Bu Y-M,Wang L. miR-130b participates in wear particle-induced inflammation and osteolysis via FOXF2/NF-κB pathway. Immunopharmacol Immunotoxicol.2018; 40(5):408-414. doi: 10.1080/08923973.2018.1514626.

45   Zhou Y, Liu Y,Cheng L. miR‐21 expression is related to particle‐induced osteolysis pathogenesis. J Orthop Res.2012; 30(11):1837-42. doi: 10.1002/jor.22128.

46   Zhang L, Zhao W, Bao D, et al. miR-9-5p promotes wear-particle-induced osteoclastogenesis through activation of the SIRT1/NF-κB pathway. 3 Biotech. 2021; 11:258. doi: 10.1007/s13205-021-02814-8.

47   Lagos-Quintana M, Rauhut R, Lendeckel W,Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294:853-858. doi: 10.1126/science.1064921.

48   da Costa Martins PA,De Windt LJ. miR-21: a miRaculous Socratic paradox. Cardiovasc Res.2010; 87(3):397-400. doi: 10.1093/cvr/cvq196.

49   Li X, Guo L, Liu Y, et al. MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem Biophys Res Commun. 2017; 493:928-933 doi: 10.1016/j.bbrc.2017.09.119.

50   Oka S, Li X, Zhang F, et al. MicroRNA-21 facilitates osteoblast activity. Biochem Biophys Rep. 2021; 25:100894 doi: 10.1016/j.bbrep.2020.100894.

51   Li H, Yang F, Wang Z, Fu Q,Liang A. MicroRNA-21 promotes osteogenic differentiation by targeting small mothers against decapentaplegic 7. Mol Med Rep.2015; 12(1):1561-7. doi: 10.3892/mmr.2015.3497.

52   Lian F, Zhao C, Qu J, et al. Icariin attenuates titanium particle-induced inhibition of osteogenic differentiation and matrix mineralization via miR-21-5p. Cell Biol Int. 2018; 42:931-939. doi: 10.1002/cbin.10957.

53   Wang S, Liu Z, Wang J, et al. miR‑21 promotes osteoclastogenesis through activation of PI3K/Akt signaling by targeting Pten in RAW264.7 cells. Mol Med Rep. 2020; 21:1125-1132. doi: 10.3892/mmr.2020.10938.

54   Kriegel AJ, Liu Y, Fang Y, Ding X,Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012; 44:237-244. doi: 10.1152/physiolgenomics.00141.2011.

55   Wang FS, Chuang PC, Lin CL, et al. MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum. 2013; 65:1530-1540. doi: 10.1002/art.37948.

56   Rossi M, Pitari MR, Amodio N, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013; 228:1506-1515. doi: 10.1002/jcp.24306.

57   Franceschetti T, Kessler CB, Lee SK,Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 2013; 288:33347-33360. doi: 10.1074/jbc.M113.484568.

58   Bu Y-m, Zheng D-z, Wang L,Liu J. Abrasive endoprosthetic wear particles inhibit IFN-γ secretion in human monocytes via upregulating TNF-α-induced miR-29b. Inflammation.2017; 40(1):166-173. doi: 10.1007/s10753-016-0465-5.

59   Concepcion CP, Bonetti C,Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J. 2012; 18:262-267. doi: 10.1097/PPO.0b013e318258b60a.

60   Murata K, Ito H, Yoshitomi H, et al. Inhibition of miR‐92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res.2014; 29(2):316-26. doi: 10.1002/jbmr.2040.

61   Hu L, Liu J, Xue H, et al. miRNA-92a-3p regulates osteoblast differentiation in patients with concomitant limb fractures and TBI via IBSP/PI3K-AKT inhibition. Mol Ther Nucleic

 

Acids.2021:23:1345-1359. doi: 10.1016/j.omtn.2021.02.008.

62   Yan X, Wang H, Li Y, et al. MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Mol Med Rep.2018; 17(6):7821-7826. doi: 10.3892/mmr.2018.8829..

63   Wen Z, Lin S, Li C, et al. MiR-92a/KLF4/p110δ regulates titanium particles-induced macrophages inflammation and osteolysis. Cell Death Discov.2022; 8(1):197. doi: 10.1038/s41420-022-00999-2.

64   Fang T, Wu Q, Zhou L, Mu S, Fu QJEcr. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res.2016; 347(1):74-82. doi: 10.1016/j.yexcr.2016.07.010.

65   Liu K, Jing Y, Zhang W, et al. silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone. 2017; 97:130-138. doi: 10.1016/j.bone.2017.01.014.

66   Tao Y, Wang Z, Wang L, et al. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford). 2017; 56:1804-1813. doi: 10.1093/rheumatology/kex233.

67   Tao Y, Wang Z, Wang L, et al. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford).2017; 56(10):1804-1813. doi: 10.1093/rheumatology/kex233.

68   Yu B, Bai J, Shi J, et al. MiR-106b inhibition suppresses inflammatory bone destruction of wear debris-induced periprosthetic osteolysis in rats. J Cell Mol Med. 2020; 24:7490-7503. doi: 10.1111/jcmm.15376.

69   Chen B, Yang W, Zhao H, et al. Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression. Exp Ther Med. 2020; 19:1042-1050. doi: 10.3892/etm.2019.8278.

70   Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010; 19:877-885 doi: 10.1089/scd.2009.0112.

71   Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008; 105:13906-13911. doi: 10.1073/pnas.0804438105.

72   Xu S, Cecilia Santini G, De Veirman K, et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One.2013; 8(11):e79752. doi: 10.1371/journal.pone.0079752.

73   Zhang Y, Zhu Q, Fang Q, et al. LINC01534/miR-135b-5p/PTPRT axis regulates inflammatory response in loosening total hip replacement via modulating NF-κB signaling pathway. Injury.2022; 53(6):1829-1836. doi: 10.1016/j.injury.2022.03.022.

74   Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008; 10:R101. doi: 10.1186/ar2493.

75   Blüml S, Bonelli M, Niederreiter B, et al. Essential role of microRNA‐155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum.2011; 63(5):1281-8. doi: 10.1002/art.30281.

76   Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast‐specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem.2010; 109(5):866-75. doi: 10.1002/jcb.22228.

77   Mann M, Barad O, Agami R, Geiger B,Hornstein E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc Natl Acad Sci U S A.2010; 107(36):15804-9. doi: 10.1073/pnas.0915022107.

78   Zhang J, Zhao H, Chen J, et al. Interferon-β-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett.2012; 586(19):3255-62. doi: 10.1016/j.febslet.2012.06.047.

79   Li Y, Zhang L, Wang J, Zheng Y, Cui J, Yuan G. Tanshinone IIA attenuates polyethylene-induced osteolysis in a mouse model: The key role of miR-155-5p/FOXO3 axis. Journal of Functional Foods. 2021; 87:104784. doi: 10.1016/j.jff.2021.104784.