Document Type : SCOPING REVIEW
Authors
1 Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Orthopedics, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Babol University of Medical Sciences, Babol, Iran
4 Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract
Keywords
Main Subjects
2 Kaya C, Seyman CC,Kaya Y. Determination of the effect of preoperative knee joint function on postoperative quality of life in patients with total knee arthroplasty. J Orthop Res.2024. doi: 10.1002/jor.25876.
3 Djahani O, Rainer S, Pietsch M,Hofmann S. Systematic analysis of painful total knee prosthesis, a diagnostic algorithm. Arch Bone Jt Surg. 2013; 1:48-52.
4 Abu-Amer Y, Darwech I,Clohisy JC. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther. 2007; 9 Suppl 1(Suppl 1):S6. doi: 10.1186/ar2170.
5 Dyskova T, Kriegova E, Slobodova Z, et al. Inflammation time-axis in aseptic loosening of total knee arthroplasty: A preliminary study. PLoS One. 2019; 14(8):e0221056. doi: 10.1371/journal.pone.0221056.
6 Pakos EE, Paschos NK,Xenakis TA. Long Term Outcomes of Total Hip Arthroplasty in Young Patients under 30. Arch Bone Jt Surg. 2014; 2:157-162.
7 Hodges NA, Sussman EM,Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials.2021:278:121127. doi: 10.1016/j.biomaterials.2021.121127.
8 Purdue PE, Koulouvaris P, Nestor BJ,Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J.2006; 2(2):102-13. doi: 10.1007/s11420-006-9003-6.
9 Tahamtan A, Teymoori-Rad M, Nakstad B,Salimi V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front Immunol.2018:9:1377. doi: 10.3389/fimmu.2018.01377.
10 Felekkis K, Touvana E, Stefanou C,Deltas C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia .2010; 14:236-240.
11 Gámez B, Rodriguez-Carballo E,Ventura FJJome. MicroRNAs and post-transcriptional regulation of skeletal development. J Mol Endocrinol.2014; 52(3):R179-97. doi: 10.1530/JME-13-0294.
12 Shin VY,Chu K-M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol.2014; 20(30):10432-9. doi: 10.3748/wjg.v20.i30.10432.
13 Ying SY, Chang DC,Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol.2008; 38(3):257-68. doi: 10.1007/s12033-007-9013-8.
14 Ramalingam P, Palanichamy JK, Singh A, et al. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA.2014; 20(1):76-87. doi: 10.1261/rna.041814.113.
15 Tanzer A,Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004; 339(2):327-35. doi: 10.1016/j.jmb.2004.03.065.
16 Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J.2004; 23(20):4051-60. doi: 10.1038/sj.emboj.7600385.
17 Medley JC, Panzade G,Zinovyeva AY. microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA.2021; 12(3):e1627. doi: 10.1002/wrna.1627.
18 Zeng L, Jiang H-L, Ashraf GM, Li Z-R,Liu RJNRR. MicroRNA and mRNA profiling of cerebral cortex in a transgenic mouse model of Alzheimer's disease by RNA sequencing. Neural Regen Res.2021; 16(10):2099-2108. doi: 10.4103/1673-5374.308104.
19 von Knoch M, Wedemeyer C, Pingsmann A, et al. The decrease of particle-induced osteolysis after a single dose of bisphosphonate. Biomaterials 2005; 26:1803-1808. doi: 10.1016/j.biomaterials.2004.06.010.
20 Kandahari AM, Yang X, Laroche KA, Dighe AS, Pan D, Cui Q. A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res.2016:4:16014. doi: 10.1038/boneres.2016.14.
21 Fokter S, eds. Recent advances in arthroplasty. 1st ed. IntechOpen; 2012.
22 Wang S, Deng Z, Ma Y, et al. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci .2020; 16:2675-2691. doi: 10.7150/ijbs.46627.
23 Qiu J, Peng P, Xin M, et al. ZBTB20-mediated titanium particle-induced peri-implant osteolysis by promoting macrophage inflammatory responses. Biomater Sci.2020; 8(11):3147-3163. doi: 10.1039/d0bm00147c.
24 Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol. 2018; 59:391-412. doi: 10.1016/j.intimp.2018.03.002.
25 Maitra R, Clement CC, Crisi GM, Cobelli N,Santambrogio L. Immunogenecity of modified alkane polymers is mediated through TLR1/2 activation. PLoS One. 2008; 3:e2438. doi: 10.1371/journal.pone.0002438.
26 Ingham E,Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005; 26(11):1271-86. doi: 10.1016/j.biomaterials.2004.04.035.
27 Hameister R, Lohmann CH, Dheen ST, Singh G,Kaur C. The effect of TNF-α on osteoblasts in metal wear-induced periprosthetic bone loss. Bone Joint Res. 2020; 9:827-839. doi: 10.1302/2046-3758.911.bjr-2020-0001.r2.
28 Swanson KV, Deng M,Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol.2019; 19(8):477-489. doi: 10.1038/s41577-019-0165-0.
29 Meng J, Zhou C, Hu B, et al. Stevioside prevents wear particle-induced osteolysis by inhibiting osteoclastogenesis and inflammatory response via the suppression of TAK1 activation. Front Pharmacol.2018:9:1053. doi: 10.3389/fphar.2018.01053.
30 Terkawi MA, Kadoya K, Takahashi D, et al. Identification of IL-27 as potent regulator of inflammatory osteolysis associated with vitamin E-blended ultra-high molecular weight polyethylene debris of orthopedic implants. Acta Biomater.2019:89:242-251. doi: 10.1016/j.actbio.2019.03.028.
31 Hensley AP,McAlinden A. The role of microRNAs in bone development. Bone. 2021; 143:115760. doi: 10.1016/j.bone.2020.115760.
32 Chen J, Qiu M, Dou C, Cao Z,Dong SJDDR. MicroRNAs in bone balance and osteoporosis. Drug Dev Res.2015; 76(5):235-45. doi: 10.1002/ddr.21260.
33 Hosseinpour S, He Y, Nanda A,Ye Q. MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration. Calcif Tissue Int.2019; 105(3):223-238. doi: 10.1007/s00223-019-00571-8.
34 Lam J, Takeshita S, Barker JE, et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest.2000; 106(12):1481-8. doi: 10.1172/JCI11176.
35 van Wijnen AJ, van de Peppel J, van Leeuwen JP, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Curr Osteoporos Rep. 2013; 11(2):72-82. doi: 10.1007/s11914-013-0143-6.
36 Kagiya T,Nakamura S. Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation. J Periodontal Res. 2013; 48:373-385 doi: 10.1111/jre.12017.
37 Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem. 2010; 109:866-875. doi: 10.1002/jcb.22228.
38 Inoue K, Ng C, Xia Y,Zhao B. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs. Front Cell Dev Biol. 2021; 9:651161. doi: 10.3389/fcell.2021.651161.
39 Groven RVM, van Koll J, Poeze M, Blokhuis TJ,van Griensven M. miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview. Front Surg. 2021; 8:786564. doi: 10.3389/fsurg.2021.786564.
40 Gao H,Wang X. Serum miRNA‑142 and BMP‑2 are markers of recovery following hip replacement surgery for femoral neck fracture. Exp Ther Med.2020; 20(5):105. doi: 10.3892/etm.2020.9235.
41 Li RW, Patel HR, Perriman D, Wang J, Smith PN. MicroRNA Profiling in Wear Particle Associated Osteolysis In Orthopaedic Proceedings. Bone & Joint. 2014; 96(SUPP11):43-43.
42 Jiang Y, Ma H, Zhang Q, et al. Integrative analyses reveal RNA regulatory network in Ti particles induced inflammation. European Journal of Inflammation. 2021; 19:20587392211044863.
43 Zheng DZ, Bu YM, Wang L,Liu J. MicroRNA-130b Promotes Wear Particle-Induced Osteolysis via Downregulating Frizzled-Related Protein (FRZB). Curr Neurovasc Res. 2017; 14:32-38 .doi: 10.2174/1567202614666161123112409.
44 Zheng D-Z, Bu Y-M,Wang L. miR-130b participates in wear particle-induced inflammation and osteolysis via FOXF2/NF-κB pathway. Immunopharmacol Immunotoxicol.2018; 40(5):408-414. doi: 10.1080/08923973.2018.1514626.
45 Zhou Y, Liu Y,Cheng L. miR‐21 expression is related to particle‐induced osteolysis pathogenesis. J Orthop Res.2012; 30(11):1837-42. doi: 10.1002/jor.22128.
46 Zhang L, Zhao W, Bao D, et al. miR-9-5p promotes wear-particle-induced osteoclastogenesis through activation of the SIRT1/NF-κB pathway. 3 Biotech. 2021; 11:258. doi: 10.1007/s13205-021-02814-8.
47 Lagos-Quintana M, Rauhut R, Lendeckel W,Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294:853-858. doi: 10.1126/science.1064921.
48 da Costa Martins PA,De Windt LJ. miR-21: a miRaculous Socratic paradox. Cardiovasc Res.2010; 87(3):397-400. doi: 10.1093/cvr/cvq196.
49 Li X, Guo L, Liu Y, et al. MicroRNA-21 promotes osteogenesis of bone marrow mesenchymal stem cells via the Smad7-Smad1/5/8-Runx2 pathway. Biochem Biophys Res Commun. 2017; 493:928-933 doi: 10.1016/j.bbrc.2017.09.119.
50 Oka S, Li X, Zhang F, et al. MicroRNA-21 facilitates osteoblast activity. Biochem Biophys Rep. 2021; 25:100894 doi: 10.1016/j.bbrep.2020.100894.
51 Li H, Yang F, Wang Z, Fu Q,Liang A. MicroRNA-21 promotes osteogenic differentiation by targeting small mothers against decapentaplegic 7. Mol Med Rep.2015; 12(1):1561-7. doi: 10.3892/mmr.2015.3497.
52 Lian F, Zhao C, Qu J, et al. Icariin attenuates titanium particle-induced inhibition of osteogenic differentiation and matrix mineralization via miR-21-5p. Cell Biol Int. 2018; 42:931-939. doi: 10.1002/cbin.10957.
53 Wang S, Liu Z, Wang J, et al. miR‑21 promotes osteoclastogenesis through activation of PI3K/Akt signaling by targeting Pten in RAW264.7 cells. Mol Med Rep. 2020; 21:1125-1132. doi: 10.3892/mmr.2020.10938.
54 Kriegel AJ, Liu Y, Fang Y, Ding X,Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012; 44:237-244. doi: 10.1152/physiolgenomics.00141.2011.
55 Wang FS, Chuang PC, Lin CL, et al. MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum. 2013; 65:1530-1540. doi: 10.1002/art.37948.
56 Rossi M, Pitari MR, Amodio N, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013; 228:1506-1515. doi: 10.1002/jcp.24306.
57 Franceschetti T, Kessler CB, Lee SK,Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem. 2013; 288:33347-33360. doi: 10.1074/jbc.M113.484568.
58 Bu Y-m, Zheng D-z, Wang L,Liu J. Abrasive endoprosthetic wear particles inhibit IFN-γ secretion in human monocytes via upregulating TNF-α-induced miR-29b. Inflammation.2017; 40(1):166-173. doi: 10.1007/s10753-016-0465-5.
59 Concepcion CP, Bonetti C,Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J. 2012; 18:262-267. doi: 10.1097/PPO.0b013e318258b60a.
60 Murata K, Ito H, Yoshitomi H, et al. Inhibition of miR‐92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res.2014; 29(2):316-26. doi: 10.1002/jbmr.2040.
61 Hu L, Liu J, Xue H, et al. miRNA-92a-3p regulates osteoblast differentiation in patients with concomitant limb fractures and TBI via IBSP/PI3K-AKT inhibition. Mol Ther Nucleic
Acids.2021:23:1345-1359. doi: 10.1016/j.omtn.2021.02.008.
62 Yan X, Wang H, Li Y, et al. MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Mol Med Rep.2018; 17(6):7821-7826. doi: 10.3892/mmr.2018.8829..
63 Wen Z, Lin S, Li C, et al. MiR-92a/KLF4/p110δ regulates titanium particles-induced macrophages inflammation and osteolysis. Cell Death Discov.2022; 8(1):197. doi: 10.1038/s41420-022-00999-2.
64 Fang T, Wu Q, Zhou L, Mu S, Fu QJEcr. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res.2016; 347(1):74-82. doi: 10.1016/j.yexcr.2016.07.010.
65 Liu K, Jing Y, Zhang W, et al. silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone. 2017; 97:130-138. doi: 10.1016/j.bone.2017.01.014.
66 Tao Y, Wang Z, Wang L, et al. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford). 2017; 56:1804-1813. doi: 10.1093/rheumatology/kex233.
67 Tao Y, Wang Z, Wang L, et al. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford).2017; 56(10):1804-1813. doi: 10.1093/rheumatology/kex233.
68 Yu B, Bai J, Shi J, et al. MiR-106b inhibition suppresses inflammatory bone destruction of wear debris-induced periprosthetic osteolysis in rats. J Cell Mol Med. 2020; 24:7490-7503. doi: 10.1111/jcmm.15376.
69 Chen B, Yang W, Zhao H, et al. Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression. Exp Ther Med. 2020; 19:1042-1050. doi: 10.3892/etm.2019.8278.
70 Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010; 19:877-885 doi: 10.1089/scd.2009.0112.
71 Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008; 105:13906-13911. doi: 10.1073/pnas.0804438105.
72 Xu S, Cecilia Santini G, De Veirman K, et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One.2013; 8(11):e79752. doi: 10.1371/journal.pone.0079752.
73 Zhang Y, Zhu Q, Fang Q, et al. LINC01534/miR-135b-5p/PTPRT axis regulates inflammatory response in loosening total hip replacement via modulating NF-κB signaling pathway. Injury.2022; 53(6):1829-1836. doi: 10.1016/j.injury.2022.03.022.
74 Pauley KM, Satoh M, Chan AL, et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008; 10:R101. doi: 10.1186/ar2493.
75 Blüml S, Bonelli M, Niederreiter B, et al. Essential role of microRNA‐155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum.2011; 63(5):1281-8. doi: 10.1002/art.30281.
76 Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast‐specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem.2010; 109(5):866-75. doi: 10.1002/jcb.22228.
77 Mann M, Barad O, Agami R, Geiger B,Hornstein E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc Natl Acad Sci U S A.2010; 107(36):15804-9. doi: 10.1073/pnas.0915022107.
78 Zhang J, Zhao H, Chen J, et al. Interferon-β-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett.2012; 586(19):3255-62. doi: 10.1016/j.febslet.2012.06.047.
79 Li Y, Zhang L, Wang J, Zheng Y, Cui J, Yuan G. Tanshinone IIA attenuates polyethylene-induced osteolysis in a mouse model: The key role of miR-155-5p/FOXO3 axis. Journal of Functional Foods. 2021; 87:104784. doi: 10.1016/j.jff.2021.104784.