Evaluation of Oxidative Stress and Cellular Immunity in Grades III-IV Knee Osteoarthritis

Document Type : RESEARCH PAPER

Authors

1 University of Health Sciences, Faculty of Gulhane Medicine, Department of Orthopedics and Traumatology, Ankara, Türkiye

2 University of Health Sciences, Gulhane Faculty of Dentistry, Department of Basic Medical Sciences, Ankara, Türkiye

3 University of Health Sciences, Gülhane Vocational School of Health, Department of Pathology Ankara, Türkiye

4 Ankara Etlik City Hospital, Department of Family Medicine, Ankara, Türkiye

5 University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Biochemistry, Ankara, Türkiye

10.22038/abjs.2024.78412.3612

Abstract

Objectives: In this study, the Kellgren and Lawrence system was used as the most common radiographic 
grading system for diagnosis of osteoarthritis in patients defined as Grade III and IV. It is aimed to 
reveal oxidative stress and cellular immunity status. In this context, the aim is t o discuss possible risk 
parameters regarding disease process and treatment effectiveness.
Methods: Twenty-five patients and 25 healthy individuals were included in the study. Total antioxidant, total 
oxidative stress, and thiol-disulfide balance values were determined spectrophotometrically in blood samples taken 
from individuals in the study groups. Neopterin levels were determined by the HPLC method.
Results: In our study, total antioxidant status (TAS) values were found to be lower in the healthy control group than 
in the patient group (p=0.000). There was no statistically significant difference between the groups in total oxidant 
status (TOS) (p=0.815). The oxidative stress index (OSI) value evaluated based on TAS and TOS values did not 
show a statistical difference between the groups (p=0.065). The native thiol levels were determined to be statistically 
significantly lower in the patient group (p=0.000). But, disulfide and neopterin values were statistically significantly 
higher in the patient group (p=0.001 and p=0.000). 
Conclusion: According to the findings of the current study; It is observed that the oxidant balance of individuals 
with osteoarthritis is disrupted in favor of free radicals, and as a result, cellular immunity decreases due to 
inflammation and the disease process. It is observed that these parameters change in direct proportion to the staging 
of the disease, especially in patients with stage III-IV knee osteoarthritis.
 Level of evidence: III

Keywords

Main Subjects


  1. Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother. 2020:129:110452. doi: 10.1016/j.biopha.2020.110452.
  2. Yazdi MM, Jamalaldini MH, Sobhan MR, et al. Association of ESRα Gene Pvu II T>C, XbaI A>G and BtgI G>A Polymorphisms with Knee Osteoarthritis Susceptibility: A Systematic Review and Meta-Analysis Based on 22 Case-Control Studies. Arch Bone Jt Surg. 2017; 5(6): 351-362.
  3. Gierman LM, van El B, van der Ham F, et al. Profiling the Secretion of Soluble Mediators by End Stage Osteoarthritis Synovial Tissue Explants Reveals a Reduced Responsiveness to an Inflammatory Trigger. PLoS One. 2013; 8(5). doi:10.1371/journal.pone.0062634.
  4. Cieza A, Causey K, Kamenow K, Wulf Hansen S, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396(10267): 2006–2017. doi: 10.1016/S0140-6736(20)32340-0.
  5. Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis. 2020; 79(6):819-828. doi:10.1136/annrheumdis-2019-216515.
  6. Abramoff B, Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am.2020; 104(2):293-311. doi: 10.1016/j.mcna.2019.10.007.
  7. Du X, Liu Z, Tao X, et al. Research Progress on the Pathogenesis of Knee Osteoarthritis. Orthop Surg. 2023; 15(9):2213-2224. doi:10.1111/os.13809.
  8. Turkish Statistical Institute (TUIK). Turkey Health Research Report. Available at: https://www.tuik.gov.tr/Home/Index. 2022.
  9. Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020; 93(1):12-22. doi:10.15386/mpr-1422.
  10. Perumal S, Mayilsamy S, Thangaraj S.Rheumatological Perspective of Osteoarthritis and Their Common Clinical Presentations from Patients Who Are Attending Teaching Hospital. Naturalista Campano.2024; 28 (1): 1999-2025.
  11. Abari IS, Salehi-Abari I. 2016 ACR Revised Criteria for Early Diagnosis of Knee Osteoarthritis Autoimmune Diseases and Therapeutic 2016 ACR Revised Criteria for Early Diagnosis of Knee Osteoarthritis. Autoimmune Dis Ther Approaches. 2016; 3(1):118. doi:10.14437/2378-6337-3-118.
  12. Perico DA, Uribe AC, Niño SJ, et al. A proposed modification to the Kellgren and Lawrence classification for knee osteoarthritis using a compartment-specific approach. J ExpOrthop. 2024; 11(1):e12008. doi:10.1002/jeo2.12008.
  13. Mukherjee A, Das B. The role of inflammatory mediators and

 

        matrix metalloproteinases (MMPs) in the progression of osteoarthritis. Biomater Biosyst. 2024:13:100090. doi: 10.1016/j.bbiosy.2024.100090.

  1. Rodriguez-Merchan EC, De la Corte-Rodriguez H, Roman-Belmonte JM. The Effect of Biomechanical Footwear on Pain from Knee Osteoarthritis. Arch Bone Jt Surg. 2022; 10(5): 381-384. doi: 10.22038/ABJS.2021.55417.2759.
  2. Grässel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020:9:F1000 Faculty Rev-325. doi: 10.12688/f1000research.22115.1.
  3. He Y, Li Z, Alexander PG, et al. Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. Biology (Basel).2020; 9(8):194. doi: 10.3390/biology9080194.
  4. Liu L, Luo P, Yang M, Wang J, Hou W, Xu P. The role of oxidative stress in the development of knee osteoarthritis: A comprehensive research review. Front Mol Biosci. 2022:9:1001212. doi:10.3389/fmolb.2022.1001212.
  5. Scarian E, Viola C, Dragoni F, et al. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci. 2024; 25(5):2698. doi: 10.3390/ijms25052698.
  6. Chung HY, Kim DH, Lee EK, et al. Redefining chronic inflammation in aging and age-related diseases: Proposal of the senoinflammation concept. Aging Dis. 2019; 10(2):367-382. doi:10.14336/AD.2018.0324.
  7. Yuan Z, Jiang D, Yang M, et al. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg. 2024; 16(3):532-550. doi: 10.1111/os.13993.
  8. Manukyan G, Gallo J, Mikulkova Z, et al. Phenotypic and functional characterisation of synovial fluid-derived neutrophils in knee osteoarthritis and knee infection. Osteoarthritis Cartilage. 2023; 31(1):72-82. doi: 10.1016/j.joca.2022.09.011.
  9. Na HS, Lee SY, Lee DH, et al. Soluble CCR2 gene therapy controls joint inflammation, cartilage damage, and the progression of osteoarthritis by targeting MCP-1 in a monosodium iodoacetate (MIA)-induced OA rat model. J Transl Med. 2022; 20(1):428. doi: 10.1186/s12967-022-03515-3.
  10. Lee HR, Lee S, Yoo IS, et al. CD14+ monocytes and soluble CD14 of synovial fluid are associated with osteoarthritis progression. Arch Rheumatol. 2022; 37(3):335-343. doi:10.46497/ArchRheumatol.2022.9078.
  11. Wang W, Chu Y, Zhang P, et al. Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol. 2023:116:109790. doi: 10.1016/j.intimp.2023.109790.
  12. Maneesh, M., Jayalekshmi, H., Suma, T. et al. Evidence for oxidative stress in osteoarthritis. Indian J Clin Biochem. 2005; 20(1):129-30. doi: 10.1007/BF02893057.
  13. Suantawee T, Tantavisut S, Adisakwattana S, et al.Oxidative Stress, Vitamin E, and Antioxidant Capacity in Knee Osteoarthritis. J Clin Diagn Res. 2013; 7(9):1855-9. doi: 10.7860/JCDR/2013/5802.3333.
  14. Paździor M, Kiełczykowska M, Kurzepa J, Luchowska-Kocot D, Kocot J, Musik I. The Oxidative Stress in Knee Osteoarthritis Patients. An Attempt of Evaluation of Possible Compensatory Effects Occurring in the Disease Development. Medicina (Kaunas). 2019; 55(5):150. doi: 10.3390/medicina55050150.
  15. Avci E, Çakir E, Cevher SC, Yaman H, Agilli M, Bilgi C. Determination of oxidative stress and cellular inflammation in patients with diabetic nephropathy and non-diabetic nephropathy being administered hemodialysis treatment due to chronic renal failure. Ren Fail. 2014; 36(5):767-773. doi:10.3109/0886022X.2014.890841.
  16. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37(4):277-285. doi:10.1016/j.clinbiochem.2003.11.015.
  17. Erel O, Neselioglu s. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem.2014; 47(18):326-32. doi: 10.1016/j.clinbiochem.2014.09.026.
  18. Kariminezhad Z, Rahimi M, Fernandes J, et al. Development of New Resolvin D1 Analogues for Osteoarthritis Therapy: Acellular and Computational Approaches to Study Their Antioxidant Activities. Antioxidants (Basel).2024; 13(4):386. doi: 10.3390/antiox13040386.
  19. Ertürk C, Altay MA, Selek Ş, Koçyigit A. Paraoxonase-1 activity and oxidative status in patients with knee osteoarthritis and their relationship with radiological and clinical parameters. Scand J Clin Lab Invest. 2012; 72(5):433-439. doi:10.3109/00365513.2012.687116.
  20. Altay MA, Ertürk C, Bilge A, Yaptı M, Levent A, Aksoy N. Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol Int. 2015; 35(10):1725-1731. doi:10.1007/s00296-015-3290-5.
  21. Gundogdu G, Kilic-Erkek O, Gundogdu K. The impact of sericin on inflammation, oxidative stress, and lipid metabolism in female rats with experimental knee osteoarthritis. Clin Rheumatol. 2024; 43(7):2307-2316. doi:10.1007/s10067-024-06987-4.
  22. Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants. 2024; 13(7):789. doi:10.3390/antiox13070789.
  23. Guo Q, Yin W, Wang H, Gao J, Gu Y, Wang W, Liu C, Pan G, Li B. Dynamic Proteinaceous Hydrogel Enables In-Situ Recruitment of Endogenous TGF-β1 and Stem Cells for Cartilage Regeneration. Advanced Functional Materials. 2024:2403055. doi:10.1002/adfm.202403055.
  24. Devrimsel G, Arpa M, Beyazal S, Erel O. Assessment of Thiol/Disulphide Homeostasis in Patients with Knee Osteoarthritis. Indian J Biochem Bioph. 2021; 58: 21-26.
  25. Ozler K, Erel O, Gokalp O, Avcioglu G, Neselioglu S. Is there a relationship between dynamic thiol/disulfide homeostasis and osteoarthritis progression? Arch Physiol Biochem. 2022; 128(2):431-437. doi:10.1080/13813455.2019.1689274.

 39.Inno G, Takahashi Y, Naruko T, et al. Enhanced expression of neopterin in valve tissue of bicuspid aortic stenosis. J Thorac Dis. 2024; 16(1):191-200. doi: 10.21037/jtd-23-1360.

  1. Studentova H, Hola K, Melichar B, Spisarova M. Neopterin as a potential prognostic and predictive biomarker in metastatic renal cell carcinoma treated with immune checkpoint inhibitors. Expert Rev Anticancer Ther.2024; 24(6):339-345. doi: 10.1080/14737140.2024.2341734.