Comparing the Effect of Bone-loading Exercises and Pulsed Electromagnetic Fields on Bone Turnover Markers in Women with Osteoporosis: A Randomized Clinical Trial Study Protocol

Document Type : PROTOCOL

Authors

1 Physical Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Rheumatology, Zanjan University of Medical Sciences, Zanjan, Iran

Abstract

Objective: Given the bone sensitivity to mechanical stimulus, bone-loading exercises and applying the Pulsed 
Electromagnetic Fields (PEMF(s)) are recommended for promoting bone strength. In this context, these two 
interventions 's effect on bone turnover markers (BTMs) in osteoporosis patients is yet to be clarified; consequently, 
an attempt is made in this study to compare the effect of these two interventions on bone turnover markers in women 
with Postmenopausal Osteoporosis (PMOP).
Methods: This study is design as a randomized, single-center, three-arms, controlled trial. A total of 51 women with 
PMOP will be randomly assigned to three groups of 17, using opaque, sealed envelopes containing labels for A, B, 
and C groups. Group A) will receive bone-loading exercises, B) will follow the PEMF(s) and C) will be exposed to 
the combination of A and B. These three groups will require intervention for 24 sessions (2 sessions/week) next to 
their routine medical treatment (Alendronate+ Calcium+ Vitamin D). The primary outcome of this study is the serum 
biomarker of bone formation (bone-specific alkaline phosphatase, BSALP) and resorption (N-terminal telopeptide, 
NTX). The secondary outcomes consist of thoracic kyphosis angle, fear of falling, and quality of life. The outcomes 
are measured three times: at baseline, after 24 sessions of intervention, and at 12 weeks follow-up. A primary 
outcome will be measured and reported by a laboratory expert who is blinded to the participant grouping. 
Result: The trial has the code of ethics for research (IR.TUMS.FNM.REC.1401.126) and the code of Iranian Registry 
of Clinical Trials (IRCT) (IRCT20221202056687N1). Study results are expected to be available by mid-2024.
Conclusion: This trial will provide new practical knowledge on the bone-loading exercises and PEMFS(s)’s effect 
on PMOP women. This knowledge is of the essence for physiotherapists, clinicians, other healthcare professionals, 
and policymakers in the healthcare system. 
Level of evidence: Not applicable

Keywords

Main Subjects


  1. Waltman N, Kupzyk KA, Flores LE, Mack LR, Lappe JM, Bilek LD. Bone-loading exercises versus risedronate for the prevention of osteoporosis in postmenopausal women with low bone mass: A randomized controlled trial. Osteoporos Int. 2022;33(2):475-486. doi: 10.1007/s00198-021-06083-2.
  2. Kanis JA, McCloskey EV, Harvey NC, et al. The need to distinguish intervention thresholds and diagnostic thresholds in the management of osteoporosis. Osteoporos Int. 2023; 34(1):1-9. doi: 10.1007/s00198-022-06567-9.
  3. Johnell O, Kanis J, Oden A, et al. Mortality after osteoporotic fractures. Osteoporos Int. 2004; 15(1):38-42. doi: 10.1007/s00198-003-1490-4.
  4. Nazrun AS, Tzar MN, Mokhtar SA, Mohamed IN. A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: morbidity, subsequent fractures, and mortality. Ther Clin Risk Manag.2014:10:937-48. doi: 10.2147/TCRM.S72456.
  5. Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med.2016; 374(3):254-62. doi: 10.1056/NEJMcp1513724.
  6. Cranney A, Tugwell P, Adachi J, et al. Meta-analyses of therapies for postmenopausal osteoporosis. III. Meta-analysis of risedronate for the treatment of postmenopausal osteoporosis. Endocr Rev.2002; 23(4):517-23. doi: 10.1210/er.2001-3002.
  7. Sambrook PN, Cameron ID, Chen JS, et al. Influence of fall related factors and bone strength on fracture risk in the frail elderly. Osteoporos Int. 2007; 18(5):603-10. doi: 10.1007/s00198-006-0290-z.
  8. Bilek LD, Waltman NL, Lappe JM, et al. Protocol for a randomized controlled trial to compare bone-loading exercises with risedronate for preventing bone loss in osteopenic postmenopausal women. Article. BMC Womens Health.2016; 16(1):59. doi: 10.1186/s12905-016-0339-x.
  9. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster J-Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013; 24(1):23-57. doi: 10.1007/s00198-012-2074-y.
  10. Watson S, Weeks B, Weis L, Harding A, Horan S, Beck B. High-intensity exercise did not cause vertebral fractures and improves thoracic kyphosis in postmenopausal women with low to very low bone mass: the LIFTMOR trial. J Bone Miner Res.2018; 33(2):211-220. doi: 10.1002/jbmr.3284.
  11. Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009; 43(12):898-908. doi: 10.1136/bjsm.2008.052704.
  12. Howe TE, Shea B, Dawson LJ, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011 :( 7):CD000333. doi: 10.1002/14651858.CD000333.pub2.
  13. Parhampour B, Torkaman G, Hoorfar H, Hedayati M, Ravanbod R. Effects of short-term resistance training and pulsed electromagnetic fields on bone metabolism and joint function in severe haemophilia A patients with osteoporosis: a randomized controlled trial. Clin Rehabil. 2014; 28(5):440-50. doi: 10.1177/0269215513505299.
  14. Giordano N, Battisti E, Geraci S, et al. Effect of electromagnetic fields on bone mineral density and biochemical markers of bone turnover in osteoporosis: a single-blind, randomized pilot study. Current Therapeutic Research. 2001; 62(3):187-193. doi:10.1016/S0011-393X(01)80030-8.
  15. Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U. Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond Res.2013; 27(10):2879-86. doi: 10.1519/JSC.0b013e318280d4e2.
  16. Veiskarami M, Aminian G, Bahramizadeh M, Gholami M, Ebrahimzadeh F, Arazpour M. The Efficacy of “Anatomical Posture Control Orthosis” on the Activity of Erector spinae Muscle, Risk of Falling, Balance Confidence, and Walking Speed in Osteoporotic Hyperkyphotic Subjects. Arch Bone Jt Surg.2022; 10(9):798-805. doi: 10.22038/ABJS.2021.53771.2678.
  17. Abourazzak FE, Allali F, Rostom S, et al. Factors influencing quality of life in Moroccan postmenopausal women with osteoporotic vertebral fracture assessed by ECOS 16 questionnaire. Health Qual Life Outcomes. 2009:7:23. doi: 10.1186/1477-7525-7-23.
  18. Shariatzadeh H, Modaghegh BS, Mirzaei A. The effect of dynamic hyperextension brace on osteoporosis and hyperkyphosis reduction in postmenopausal osteoporotic women. Arch Bone Jt Surg.2017; 5(3):181-185.1.doi: 0.22038/ABJS.2017.20826.1539.
  19. Sangtarash F, Manshadi F, Sadeghi A. The relationship of thoracic kyphosis to gait performance and quality of life in women with osteoporosis. Osteoporos Int. 2015; 26(8):2203-8. doi: 10.1007/s00198-015-3143-9.
  20. Basat H, Esmaeilzadeh S, Eskiyurt N. The effects of strengthening and high-impact exercises on bone metabolism and quality of life in postmenopausal women: a randomized controlled trial. J Back Musculoskelet Rehabil. 2013; 26(4):427-35. doi: 10.3233/BMR-130402.
  21. Rezaei N, Torkaman G, Movasseghe S, Hedayati M, Bayat N. The comparison of 6-week resistance training and pulsed

 

electromagnetic field on TALP, Ca, P, cortisol, and anthropometric parameters in osteoporotic postmenopausal women. 2012: 20193163173. https://doi.org/10.1007/s11332-022-01018-8.

  1. Funk RH, Monsees T, Özkucur N. Electromagnetic effects–From cell biology to medicine. Progress in histochemistry and cytochemistry. Prog Histochem Cytochem.2009; 43(4):177-264. doi: 10.1016/j.proghi.2008.07.001.
  2. Sun LY, Hsieh DK, Yu TC, et al. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics. 2009; 30(4):251-60. doi: 10.1002/bem.20472.
  3. Eid MM, El-Gendy AM, Abdelbasset WK, Elkholi SM, Abdel-Fattah MS. The effect of magnetic therapy and moderate aerobic exercise on osteoporotic patients: A randomized clinical study. Medicine (Baltimore).2021; 100(39):e27379. doi: 10.1097/MD.0000000000027379.
  4. Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 2017; 63(2):464-474. doi: 10.1373/clinchem.2016.259085.
  5. Keshavarzi F, Azadinia F, Talebian S, Rasouli O. Test-retest reliability of a load cell setup, Ito, and timed loaded standing tests for measuring muscle strength and endurance in older adults with and without hyperkyphosis. Musculoskelet Sci Pract.2022:58:102475. doi: 10.1016/j.msksp.2021.102475.
  6. Azadinia F, Kamyab M, Behtash H, Ganjavian MS, Javaheri MR. The validity and reliability of non-invasive methods for measuring kyphosis. J Spinal Disord Tech. 2014; 27(6):E212-8. doi: 10.1097/BSD.0b013e31829a3574.
  7. Azadinia F, Hosseinabadi M, Ebrahimi I, et al. Validity and test–retest reliability of photogrammetry in adolescents with hyperkyphosis. Physiother Theory Pract.2022; 38(13):3018-3026. doi: 10.1080/09593985.2021.1975337.
  8. Mosallanezhad Z, Salavati M, Hellström K, Reza Sotoudeh G, Nilsson Wikmar L, Frändin K. Cross-cultural adaptation, reliability and validity of the Persian version of the modified falls efficacy scale. Disabil Rehabil. 2011; 33(25-26):2446-53. doi: 10.3109/09638288.2011.574774.
  9. Lee Y-K, Kim H-J, Park JW, et al. Transcultural adaptation and psychometric properties of the Korean version of the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO-41). Arch Osteoporos.2019; 14(1):96. doi: 10.1007/s11657-019-0647-5.
  10. Azimi P, Shahzadi S, Azhari S, Montazeri A. An outcome measure of functionality and quality of life in Iranian women with osteoporotic vertebral fractures: a validation study of the QUALEFFO-41. J Orthop Sci. 2014; 19(6):860-7. doi: 10.1007/s00776-014-0609-0.
  11. Stanghelle B, Bentzen H, Giangregorio L, Pripp AH, Skelton DA, Bergland A. Physical fitness in older women with osteoporosis and vertebral fracture after a resistance and balance exercise programme: 3-month post-intervention follow-up of a randomised controlled trial. BMC Musculoskelet Disord.2020; 21(1):471. doi: 10.1186/s12891-020-03495-9.
  12. Holubiac IȘ, Leuciuc FV, Crăciun DM, Dobrescu T. Effect of Strength Training Protocol on Bone Mineral Density for Postmenopausal Women with Osteopenia/Osteoporosis Assessed by Dual-Energy X-ray Absorptiometry (DEXA). Sensors (Basel).2022; 22(5):1904. doi: 10.3390/s22051904.
  13. Giusti A, Giovale M, Ponte M, et al. Short-term effect of low-intensity, pulsed, electromagnetic fields on gait characteristics in older adults with low bone mineral density: A pilot randomized-controlled trial. Geriatr Gerontol Int.2013; 13(2):393-7. doi: 10.1111/j.1447-0594.2012.00915.x.
  14. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev.2003; 31(1):45-50. doi: 10.1097/00003677-200301000-00009.
  15. Roghani T, Torkaman G, Movasseghe S, Hedayati M, Goosheh B, Bayat N. Effects of short-term aerobic exercise with and without external loading on bone metabolism and balance in postmenopausal women with osteoporosis. Rheumatol Int.2013; 33(2):291-8. doi: 10.1007/s00296-012-2388-2.
  16. Olsen C, Bergland A. The effect of exercise and education on fear of falling in elderly women with osteoporosis and a history of vertebral fracture: results of a randomized controlled trial. Osteoporos Int.2014; 25(8):2017-25. doi: 10.1007/s00198-014-2724-3.
  17. Delbaere K, Van den Noortgate N, Bourgois J, Vanderstraeten G, Tine W, Cambier D. The Physical Performance Test as a predictor of frequent fallers: a prospective community-based cohort study. Clin Rehabil.2006; 20(1):83-90. doi: 10.1191/0269215506cr885oa.a.