1. Bajjig A, Cayetanot F, Taylor JA, Bodineau L, Vivodtzev I. Serotonin 1A
Receptor Pharmacotherapy and Neuroplasticity in Spinal Cord Injury.
Pharmaceuticals (Basel). 2022; 15(4).doi:10.3390/ph15040460.
2. Adigun OO, Reddy V, Varacallo M. Anatomy, Back, Spinal Cord.
StatPearls. 2022.
3. Bilchak JN, Caron G, Cote MP. Exercise-Induced Plasticity in Signaling
Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J
Mol Sci. 2021; 22(9).doi:10.3390/ijms22094858.
4. Ebrahimpour A, Razi M, Mortazavi SJ, et al. Job satisfaction, Career
Burnout, and Work-Related Well-Being Prevalence among
Orthopedic Surgeons: A Nationwide Study. Arch Bone Jt Surg. 2023;
11(4):293-300. doi:10.22038/ABJS.2022.66683.3180.
5. Khan YS, Lui F. Neuroanatomy, Spinal Cord. InStatPearls [Internet]
2022. StatPearls Publishing.
6. Ebrahimzadeh MH, Makhmalbaf H, Soltani-Moghaddas SH, Mazloumi
SM. The spinal cord injury quality-of-life-23 questionnaire, Iranian
validation study. J Res Med Sci. 2014; 19(4):349-54.
7. Ebrahimzadeh MH, Shojaei BS, Golhasani-Keshtan F, SoltaniMoghaddas SH, Fattahi AS, Mazloumi SM. Quality of life and the
related factors in spouses of veterans with chronic spinal cord injury.
Health Qual Life Outcomes. 2013; 11:48. doi:10.1186/1477-7525-11-
48.
8. Neural Injury and Repair Research Group. Available at:
https://neurosciences.ucsd.edu/research/interest-groups/neuralinjury-repair.html. Accessed, 2021.
9. Ebrahimzadeh MH, Soltani-Moghaddas SH, Birjandinejad A, OmidiKashani F, Bozorgnia S. Quality of life among veterans with chronic
spinal cord injury and related variables. Arch Trauma Res. 2014;
3(2):e17917. doi:10.5812/atr.17917.
10. Barbiellini Amidei C, Salmaso L, Bellio S, Saia M. Epidemiology of
traumatic spinal cord injury: a large population-based study. Spinal
Cord. 2022; 60(9):812-819.doi:10.1038/s41393-022-00795-w.
11. Khadour FA, Khadour YA, Meng L, Lixin C, Xu T. Epidemiological
features of traumatic spinal cord injury in Wuhan, China. J Orthop
Surg Res. 2023; 18(1):72. doi:10.1186/s13018-023-03554-6.
12. Ebrahimzadeh MH, Golhasani-Keshtan F, Shojaee BS. Correlation
between health-related quality of life in veterans with chronic spinal
cord injury and their caregiving spouses. Arch Trauma Res. 2014;
3(4):e16720. doi:10.5812/atr.16720.
13. Abdelrahman S, Ireland A, Winter EM, Purcell M, Coupaud S.
Osteoporosis after spinal cord injury: aetiology, effects and
therapeutic approaches. J Musculoskelet Neuronal Interact. 2021;
21(1):26-50.
14. Ebrahimzadeh MH, Shojaee BS, Golhasani-Keshtan F, Moharari F,
Kachooei AR, Fattahi AS. Depression, anxiety and quality of life in
caregiver spouses of veterans with chronic spinal cord injury. Iran J Psychiatry. 2014; 9(3):133-6.
15. Lv B, Zhang X, Yuan J, et al. Biomaterial-supported MSC
transplantation enhances cell-cell communication for spinal cord
injury. Stem Cell Res Ther. 2021; 12(1):36. doi:10.1186/s13287-020-
02090-y.
16. Domingues HS, Portugal CC, Socodato R, Relvas JB. Corrigendum:
Oligodendrocyte, Astrocyte and Microglia Crosstalk in Myelin
Development, Damage, and Repair. Front Cell Dev Biol. 2016; 4:79.
doi:10.3389/fcell.2016.00079.
17. Uchida K, Nakamura M, Ozawa H, Katoh S, Toyama Y, eds.
Neuroprotection and regeneration of the spinal cord. 1st ed. Springer
Tokyo; 2014.
18. Lescaudron L, Rossignol J, Dunbar GL,eds. Stem Cells and
Neurodegenerative Diseases. 1st ed. Routledge Taylor & Francis
Group; 2014.
19. Faridaalee G, Keyghobadi Khajeh F. Serum and Cerebrospinal Fluid
Levels of S-100beta Is A Biomarker for Spinal Cord Injury; a
Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2019;
7(1):e19.
20. Ganjeifar B, Mehrad-Majd H, Barforooshi AG, Baharvahdat H,
Zabihyan S, Moradi A. Diagnostic Value of Computed Tomography
Angiography in Confirmation of Brain Death. World Neurosurg.
2023:178:e275-e281. doi:10.1016/j.wneu.2023.07.042.
21. Molinaro F, La Zazzera PL, Ferraris M, Morbidoni G, Zaca D , Rinaldis
A, Carpanese F, Cioffi A, Naddeo F, Boccaccini L, Bergui M. Chapter
4 - MRI as an imaging tool for in vivo noninvasive morphological and
(partially) functional examination of injured spinal cord. In: Spinal
Cord Injury (SCI) Repair Strategies. 1st ed. Perale G, Rossi F, eds.WP
Publishing; 2020.
22. Seo JH, Kim HJ, Lee KY, Wang L, Park JW. The Prognostic Factors of
Neurologic Recovery in Spinal Cord Injury. J Korean Soc Spine Surg.
2015; 22(1):1-7.
23. Beattie MS. Inflammation and apoptosis: linked therapeutic targets in
spinal cord injury. Trends Mol Med. 2004; 10(12):580-3.
doi:10.1016/j.molmed.2004.10.006.
24. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of
acute spinal cord injury pathophysiology and emerging therapies:
promise on the horizon. Neurosurg Focus. 2008; 25(5):E2.
doi:10.3171/FOC.2008.25.11.E2.
25. Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus
on Spinal Cord Injury. Int J Mol Sci. 2023; 24(8) doi:
10.3390/ijms24087159.
26. Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury
pathogenesis and therapy. Cell Prolif. 2021; 54(3):e12992.
doi:10.1111/cpr.12992.
27. Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal Cord Injury:
Pathophysiology, Multimolecular Interactions, and Underlying
Recovery Mechanisms. Int J Mol Sci. 2020; 21(20).
doi:10.3390/ijms21207533.
28. Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms
and therapeutic interventions. Signal Transduct Target Ther. 2023;
8(1):245. doi:10.1038/s41392-023-01477-6.
29. Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current
Advancements in Spinal Cord Injury Research-Glial Scar Formation
and Neural Regeneration. Cells. 2023; 12(6) doi:
10.3390/cells12060853.
30. Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids
central nervous system axon regeneration. Nature. 2016;
532(7598):195-200. doi:10.1038/nature17623.
31. Carelli S, Giallongo T, Rey F, et al. Neuroprotection, Recovery of
Function and Endogenous Neurogenesis in Traumatic Spinal Cord
Injury Following Transplantation of Activated Adipose Tissue. Cells.
2019; 8(4).doi:10.3390/cells8040329.
32. Yari D, Ehsanbakhsh Z, Validad MH, Langroudi FH. Association of
TIMP-1 and COL4A4 Gene Polymorphisms with Keratoconus in an
Iranian Population. J Ophthalmic Vis Res. 2020; 15(3):299-307.
doi:10.18502/jovr.v15i3.7448.
33. Zhang Q, Shi B, Ding J, et al. Polymer scaffolds facilitate spinal cord
injury repair. Acta Biomater. 2019; 88:57-77.
doi:10.1016/j.actbio.2019.01.056.
34. Yousefifard M, Vazirizadeh-Mahabadi MH, Haghani L, et al. Early
General Hypothermia Improves Motor Function after Spinal Cord
Injury in Rats; a Systematic Review and Meta-Analysis. Arch Acad
Emerg Med. 2020; 8(1):e80.
35. Venkatesh K, Ghosh SK, Mullick M, Manivasagam G, Sen D. Spinal cord
injury: pathophysiology, treatment strategies, associated challenges,
and future implications. Cell Tissue Res. 2019; 377(2):125-151.
doi:10.1007/s00441-019-03039-1.
36. Lee BJ, Jeong JH. Review: Steroid Use in Patients with Acute Spinal
Cord Injury and Guideline Update. Korean J Neurotrauma. 2022;
18(1):22-30. doi:10.13004/kjnt.2022.18.e21.
37. Zhang Y, Al Mamun A, Yuan Y, et al. Acute spinal cord injury:
Pathophysiology and pharmacological intervention (Review). Mol
Med Rep. 2021; 23(6) doi:10.3892/mmr.2021.12056.
38. Li Y, Gu R, Zhu Q, Liu J. Changes of Spinal Edema and Expression of
Aquaporin 4 in Methylprednisolone-treated Rats with Spinal Cord
Injury. Ann Clin Lab Sci. 2018; 48(4):453-459.
39. Roohbakhsh A, Etemad L, Karimi G. Resolvin D1: A key endogenous
inhibitor of neuroinflammation. Biofactors. 2022; 48(5):1005-1026.
doi:10.1002/biof.1891.
40. Park A, Anderson D, Battaglino RA, Nguyen N, Morse LR. Ibuprofen
use is associated with reduced C-reactive protein and interleukin-6
levels in chronic spinal cord injury. J Spinal Cord Med. 2022;
45(1):117-125. doi:10.1080/10790268.2020.1773029.
41. Hayta E, Elden H. Acute spinal cord injury: A review of
pathophysiology and potential of non-steroidal anti-inflammatory
drugs for pharmacological intervention. J Chem Neuroanat. 2018;
87:25-31. doi:10.1016/j.jchemneu.2017.08.001.
42. Roohbakhsh A, Moshiri M, Salehi Kakhki A, Iranshahy M, Amin F,
Etemad L. Thymoquinone abrogates methamphetamine-induced
striatal neurotoxicity and hyperlocomotor activity in mice. Res Pharm
Sci. 2021; 16(4):391-399. doi:10.4103/1735-5362.319577.
43. Fehlings MG, Wilson JR, Tetreault LA, et al. A Clinical Practice
Guideline for the Management of Patients with Acute Spinal Cord
Injury: Recommendations on the Use of Methylprednisolone Sodium
Succinate. Global Spine J. 2017; 7(3 Suppl):203S-211S.
doi:10.1177/2192568217703085.
44. Kupfer M, Formal CS. Non-opioid pharmacologic treatment of chronic
spinal cord injury-related pain. J Spinal Cord Med. 2022; 45(2):163-
172. doi:10.1080/10790268.2020.1730109.
45. Yousefifard M, Hashemi B, Forouzanfar MM, Khatamian Oskooi R,
Madani Neishaboori A, Jalili Khoshnoud R. Ultra-early Spinal
Decompression Surgery Can Improve Neurological Outcome of
Complete Cervical Spinal Cord Injury; a Systematic Review and Metaanalysis. Arch Acad Emerg Med. 2022; 10(1):e11.
doi:10.22037/aaem.v10i1.1471.
46. Ma Y, Zhu Y, Zhang B, Wu Y, Liu X, Zhu Q. The Impact of Urgent (<8
Hours) Decompression on Neurologic Recovery in Traumatic Spinal
Cord Injury: A Meta-Analysis. World Neurosurg. 2020; 140:e185-
e194. doi:10.1016/j.wneu.2020.04.230.
47. Ter Wengel PV, Martin E, De Witt Hamer PC, et al. Impact of Early
(<24 h) Surgical Decompression on Neurological Recovery in
Thoracic Spinal Cord Injury: A Meta-Analysis. J Neurotrauma. 2019;
36(18):2609-2617. doi:10.1089/neu.2018.6277.
48. Badhiwala JH, Wilson JR, Witiw CD, et al. The influence of timing of
surgical decompression for acute spinal cord injury: a pooled analysis
of individual patient data. Lancet Neurol. 2021; 20(2):117-126.
doi:10.1016/S1474-4422(20)30406-3.
49. Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve
grafts and their application in peripheral nerve regeneration. Prog
Neurobiol. 2011; 93(2):204-30.
doi:10.1016/j.pneurobio.2010.11.002.
50. Leckenby JI, Furrer C, Haug L, Juon Personeni B, Vogelin E. A
Retrospective Case Series Reporting the Outcomes of Avance Nerve Allografts in the Treatment of Peripheral Nerve Injuries. Plast
Reconstr Surg. 2020; 145(2):368e-381e.
doi:10.1097/PRS.0000000000006485.
51. Liu Y, Xie JX, Niu F, et al. Surgical intervention combined with weightbearing walking training improves neurological recoveries in 320
patients with clinically complete spinal cord injury: a prospective
self-controlled study. Neural Regen Res. 2021; 16(5):820-829.
doi:10.4103/1673-5374.297080.
52. Mansour NM, Pino IP, Freeman D, et al. Advances in Epidural Spinal
Cord Stimulation to Restore Function after Spinal Cord Injury: History
and Systematic Review. J Neurotrauma. 2022; 39(15-16):1015-
1029.doi:10.1089/neu.2022.0007.
53. O'Connell NE, Ferraro MC, Gibson W, et al. Implanted spinal
neuromodulation interventions for chronic pain in adults. Cochrane
Database Syst Rev. 2021; 12:CD013756.
doi:10.1002/14651858.CD013756.pub2.
54. Qu H, Zhao Y. Advances in tissue state recognition in spinal surgery: a
review. Front Med. 2021; 15(4):575-584. doi:10.1007/s11684-020-
0816-3.
55. Shahpari O, Mortazavi J, Ebrahimzadeh MH, Bagheri F, Mousavian A.
Role of Hip Arthroscopy in the Treatment of Avascular Necrosis of the
Hip: A Systematic Review. Arch Bone Jt Surg. 2022; 10(6):480-489.
doi:10.22038/ABJS.2021.58534.2894.
56. Xiong F, Fu C, Zhang Q, et al. The Effect of Different Acupuncture
Therapies on Neurological Recovery in Spinal Cord Injury: A
Systematic Review and Network Meta-Analysis of Randomized
Controlled Trials. Evid Based Complement Alternat Med. 2019;
2019:2371084. doi:10.1155/2019/2371084.
57. Tang H, Guo Y, Zhao Y, et al. Effects and Mechanisms of Acupuncture
Combined with Mesenchymal Stem Cell Transplantation on Neural
Recovery after Spinal Cord Injury: Progress and Prospects. Neural
Plast. 2020; 2020:8890655. doi:10.1155/2020/8890655.
58. Zeng YS, Ding Y, Xu HY, et al. Electro-acupuncture and its combination
with adult stem cell transplantation for spinal cord injury treatment:
A summary of current laboratory findings and a review of literature.
CNS Neurosci Ther. 2022; 28(5):635-647. doi:10.1111/cns.13813.
59. van der Scheer JW, Totosy de Zepetnek JO, Blauwet C, et al.
Assessment of body composition in spinal cord injury: A scoping
review. PLoS One. 2021; 16(5):e0251142.
doi:10.1371/journal.pone.0251142.
60. Ginis KAM, van der Scheer JW, Latimer-Cheung AE, et al. Correction:
Evidence-based scientific exercise guidelines for adults with spinal
cord injury: an update and a new guideline. Spinal Cord. 2018;
56(11):1114. doi:10.1038/s41393-018-0194-8.
61. van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH.
Functional electrical stimulation cycling exercise after spinal cord
injury: a systematic review of health and fitness-related outcomes. J
Neuroeng Rehabil. 2021; 18(1):99. doi:10.1186/s12984-021-00882-
8.
62. Lovas J, Tran Y, Middleton J, Bartrop R, Moore N, Craig A. Managing
pain and fatigue in people with spinal cord injury: a randomized
controlled trial feasibility study examining the efficacy of massage
therapy. Spinal Cord. 2017; 55(2):162-166. doi:10.1038/sc.2016.156.
63. Franz S, Schulz B, Wang H, et al. Management of pain in individuals
with spinal cord injury: Guideline of the German-Speaking Medical
Society for Spinal Cord Injury. Ger Med Sci. 2019; 17:Doc05.
doi:10.3205/00027.1
64. Palladino L, Ruotolo I, Berardi A, Carlizza A, Galeoto G. Efficacy of
aquatic therapy in people with spinal cord injury: a systematic review
and meta-analysis. Spinal Cord. 2023; 61(6):317-322.
doi:10.1038/s41393-023-00892-4.
65. Vafaei-Nezhad S, Pour Hassan M, Noroozian M, et al. A Review of LowLevel Laser Therapy for Spinal Cord Injury: Challenges and Safety. J
Lasers Med Sci. 2020; 11(4):363-368. doi:10.34172/jlms.2020.59.
66. Kim J, Kim EH, Lee K, et al. Low-Level Laser Irradiation Improves
Motor Recovery after Contusive Spinal Cord Injury in Rats. Tissue Eng
Regen Med. 2017; 14(1):57-64. doi:10.1007/s13770-016-0003-4.
67. Tehrani MR, Nazary-Moghadam S, Zeinalzadeh A, Moradi A, MehradMajd H, Sahebalam M. Efficacy of low-level laser therapy on pain,
disability, pressure pain threshold, and range of motion in patients
with myofascial neck pain syndrome: a systematic review and metaanalysis of randomized controlled trials. Lasers Med Sci. 2022;
37(9):3333-3341.doi:10.1007/s10103-022-03626-9.
68. Farid MF, Y SA, Rizk H. Stem cell treatment trials of spinal cord
injuries in animals. Auton Neurosci. 2021; 238:102932.
doi:10.1016/j.autneu.2021.102932.
69. Huang L, Fu C, Xiong F, He C, Wei Q. Stem Cell Therapy for Spinal Cord
Injury. Cell Transplant. 2021; 30:963689721989266.
doi:10.1177/0963689721989266.
70. Nori S, Nakamura M, Okano H. Plasticity and regeneration in the
injured spinal cord after cell transplantation therapy. Prog Brain Res.
2017; 231:33-56. doi:10.1016/bs.pbr.2016.12.007.
71. Chhabra HS, Sarda K. Clinical translation of stem cell based
interventions for spinal cord injury - Are we there yet? Adv Drug
Deliv Rev. 2017; 120:41-49. doi:10.1016/j.addr.2017.09.021.
72. Lowry LE, Herzig MC, Christy BA, et al. Neglected No More: Emerging
Cellular Therapies in Traumatic Injury. Stem Cell Rev Rep. 2021;
17(4):1194-1214.doi:10.1007/s12015-020-10086-7.
73. Takami T, Shimokawa N, Parthiban J, Zileli M, Ali S. Pharmacologic
and Regenerative Cell Therapy for Spinal Cord Injury: WFNS Spine
Committee Recommendations. Neurospine. 2020; 17(4):785-796.
doi:10.14245/ns.2040408.204.
74. Khan S, Mafi P, Mafi R, Khan W. A Systematic Review of Mesenchymal
Stem Cells in Spinal Cord Injury, Intervertebral Disc Repair and Spinal
Fusion. Curr Stem Cell Res Ther. 2018; 13(4):316-323.
doi:10.2174/1574888X11666170907120030.
75. Kong D, Feng B, Amponsah AE, et al. hiPSC-derived NSCs effectively
promote the functional recovery of acute spinal cord injury in mice.
Stem Cell Res Ther. 2021; 12(1):172. doi:10.1186/s13287-021-
02217-9.
76. Zheng W, Li Q, Zhao C, Da Y, Zhang HL, Chen Z. Differentiation of Glial
Cells From hiPSCs: Potential Applications in Neurological Diseases
and Cell Replacement Therapy. Front Cell Neurosci. 2018; 12:239.
doi:10.3389/fncel.2018.00239.
77. Wang X, Kuang N, Chen Y, et al. Transplantation of olfactory
ensheathing cells promotes the therapeutic effect of neural stem cells
on spinal cord injury by inhibiting necrioptosis. Aging (Albany NY).
2021; 13(6):9056-9070. doi:10.18632/aging.202758.
78. Monje PV, Deng L, Xu XM. Human Schwann Cell Transplantation for
Spinal Cord Injury: Prospects and Challenges in Translational
Medicine. Front Cell Neurosci. 2021; 15:690894.
doi:10.3389/fncel.2021.690894.
79. Beatriz M, Vilaca R, Lopes C. Exosomes: Innocent Bystanders or
Critical Culprits in Neurodegenerative Diseases. Front Cell Dev Biol.
2021; 9:635104. doi:10.3389/fcell.2021.635104.
80. Pishavar E, Oroojalian F, Salmasi Z, Hashemi E, Hashemi M. Recent
advances of dendrimer in targeted delivery of drugs and genes to
stem cells as cellular vehicles. Biotechnol Prog. 2021; 37(4):e3174.
doi:10.1002/btpr.3174.
81. Upadhyayula PS, Martin JR, Rennert RC, Ciacci JD. Review of operative
considerations in spinal cord stem cell therapy. World J Stem Cells.
2021; 13(2):168-176. doi:10.4252/wjsc.v13.i2.168.
82. Honmou O, Yamashita T, Morita T, et al. Intravenous infusion of auto
serum-expanded autologous mesenchymal stem cells in spinal cord
injury patients: 13 case series. Clin Neurol Neurosurg. 2021;
203:106565. doi:10.1016/j.clineuro.2021.106565.
83. Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the
treatment of spinal cord injury: Mechanisms, current advances and
future challenges. Front Immunol. 2023; 14:1141601.
doi:10.3389/fimmu.2023.1141601.
84. Bartlett RD, Burley S, Ip M, Phillips JB, Choi D. Cell Therapies for
Spinal Cord Injury: Trends and Challenges of Current Clinical Trials.
Neurosurgery. 2020; 87(4):E456-E472.
doi:10.1093/neuros/nyaa149.85. Shang Z, Wang R, Li D, et al. Spinal Cord Injury: A Systematic Review
and Network Meta-Analysis of Therapeutic Strategies Based on 15
Types of Stem Cells in Animal Models. Front Pharmacol. 2022;
13:819861. doi:10.3389/fphar.2022.819861.
86. Pang QM, Chen SY, Fu SP, et al. Regulatory Role of Mesenchymal Stem
Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res.
2022; 15:573-593. doi:10.2147/JIR.S349572.
87. Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU. Stem cell-based cell
therapy for spinal cord injury. Cell Transplant. 2007; 16(4):355-64.
doi:10.3727/000000007783464885.
88. Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for
peripheral nerve and spinal cord regeneration. Bioact Mater. 2021;
6(11):4141-4160. doi:10.1016/j.bioactmat.2021.04.019.
89. saberi A, Khodaverdi E, Kamali H, et al. Fabrication and
Characterization of Biomimetic Electrospun Cartilage Decellularized
Matrix (CDM)/Chitosan Nanofiber Hybrid for Tissue Engineering
Applications: Box-Behnken Design for Optimization. Journal of
Polymers and the Environment. 2023:1-20.doi:10.1007/s10924-023-
03065-9.
90. Ashammakhi N, Kim HJ, Ehsanipour A, et al. Regenerative Therapies
for Spinal Cord Injury. Tissue Eng Part B Rev. 2019; 25(6):471-491.
doi:10.1089/ten.TEB.2019.0182.
91. Elkhenany H, Bonilla P, Giraldo E, et al. A Hyaluronic Acid Demilune
Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human
Neural Precursor Cells and Curcumin for Surface Capping of Spinal
Cord Injuries. Biomedicines. 2021; 9(12) doi:
10.3390/biomedicines9121928.
92. Liu S, Sun X, Wang T, et al. Nano-fibrous and ladder-like multi-channel
nerve conduits: Degradation and modification by gelatin. Mater Sci
Eng C Mater Biol Appl. 2018; 83:130-142.
doi:10.1016/j.msec.2017.11.020.
93. Li R, Liu H, Huang H, et al. Chitosan conduit combined with hyaluronic
acid prevent sciatic nerve scar in a rat model of peripheral nerve
crush injury. Mol Med Rep. 2018; 17(3):4360-4368.
doi:10.3892/mmr.2018.8388.
94. Martinez-Ramos C, Doblado LR, Mocholi EL, et al. Biohybrids for
spinal cord injury repair. J Tissue Eng Regen Med. 2019; 13(3):509-
521. doi:10.1002/term.2816.
95. Licht C, Rose JC, Anarkoli AO, et al. Synthetic 3D PEG-Anisogel
Tailored with Fibronectin Fragments Induce Aligned Nerve
Extension. Biomacromolecules. 2019; 20(11):4075-4087.
doi:10.1021/acs.biomac.9b00891.
96. Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional
hydrogels as therapeutic tools for spinal cord injury: New
perspectives on immunopharmacological interventions. Pharmacol
Ther. 2022; 234:108043. doi:10.1016/j.pharmthera.2021.108043.
97. Kubinová Š. Chapter 7 - Soft and rigid scaffolds for spinal cord injury
regeneration. In: Spinal Cord Injury (SCI) Repair Strategies. Perale G,
Rossi F, eds.Woodhead Publishing; 2020.
98. Yari D, Movaffagh J, Ebrahimzadeh MH, Saberi A, Qujeq D, Moradi A.
Biomimetic ECM-Based Hybrid Scaffold for Cartilage Tissue
Engineering Applications. Journal of Polymers and the Environment.
2024:1-9.doi:10.1007/s10924-024-03230-8.
99. Zhang S, Wang XJ, Li WS, et al. Polycaprolactone/polysialic acid
hybrid, multifunctional nanofiber scaffolds for treatment of spinal
cord injury. Acta Biomater. 2018; 77:15-27.
doi:10.1016/j.actbio.2018.06.038.
100. Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell
distribution and axon orientation determine local spinal cord
mechanical properties. Biophys J. 2015; 108(9):2137-47.
doi:10.1016/j.bpj.2015.03.039.
101. Hu J, Jin LQ, Selzer ME. Inhibition of central axon regeneration:
perspective from chondroitin sulfate proteoglycans in lamprey spinal
cord injury. Neural Regen Res. 2022; 17(9):1955-1956.
doi:10.4103/1673-5374.335144.
102. Liu S, Xie YY, Wang B. Role and prospects of regenerative
biomaterials in the repair of spinal cord injury. Neural Regen Res.
2019; 14(8):1352-1363. doi:10.4103/1673-5374.253512.
103. Xiang W, Cao H, Tao H, et al. Applications of chitosan-based
biomaterials: From preparation to spinal cord injury neuroprosthetic
treatment. Int J Biol Macromol. 2023; 230:123447.
doi:10.1016/j.ijbiomac.2023.123447.
104. Feng C, Deng L, Yong YY, et al. The Application of Biomaterials in
Spinal Cord Injury. Int J Mol Sci. 2023; 24(1) doi:
10.3390/ijms24010816.
105. Wang SX, Lu YB, Wang XX, et al. Graphene and graphene-based
materials in axonal repair of spinal cord injury. Neural Regen Res.
2022; 17(10):2117-2125. doi:10.4103/1673-5374.335822.
106. Luo Y, Fan L, Liu C, et al. An injectable, self-healing, electroconductive
extracellular matrix-based hydrogel for enhancing tissue repair after
traumatic spinal cord injury. Bioact Mater. 2022; 7:98-111.
doi:10.1016/j.bioactmat.2021.05.039.
107. Luo J, Shi X, Li L, et al. An injectable and self-healing hydrogel with
controlled release of curcumin to repair spinal cord injury. Bioact
Mater. 2021; 6(12):4816-4829.
doi:10.1016/j.bioactmat.2021.05.022.
108. Bousalis D, McCrary MW, Vaughn N, et al. Decellularized peripheral
nerve as an injectable delivery vehicle for neural applications. J
Biomed Mater Res A. 2022; 110(3):595-611.
doi:10.1002/jbm.a.37312.
109. Xu Y, Zhou J, Liu C, et al. Understanding the role of tissue-specific
decellularized spinal cord matrix hydrogel for neural
stem/progenitor cell microenvironment reconstruction and spinal
cord injury. Biomaterials. 2021; 268:120596.
doi:10.1016/j.biomaterials.2020.120596.
110. Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, Rose JC, Haraszti T,
De Laporte L. An Injectable Hybrid Hydrogel with Oriented Short
Fibers Induces Unidirectional Growth of Functional Nerve Cells.
Small. 2017; 13(36) doi:10.1002/smll.201702207.
111. Agarwal G, Roy A, Kumar H, Srivastava A. Graphene-collagen cryogel
controls neuroinflammation and fosters accelerated axonal
regeneration in spinal cord injury. Biomater Adv. 2022; 139:212971.
doi:10.1016/j.bioadv.2022.212971.
112. Zhang L, Li Z, Mao L, Wang H. Circular RNA in Acute Central Nervous
System Injuries: A New Target for Therapeutic Intervention. Front
Mol Neurosci. 2022; 15:816182. doi:10.3389/fnmol.2022.816182.
113. Yari D, Ebrahimzadeh MH, Movaffagh J, et al. Biochemical Aspects of
Scaffolds for Cartilage Tissue Engineering; from Basic Science to
Regenerative Medicine. Arch Bone Jt Surg. 2022; 10(3):229-244.
doi:10.22038/ABJS.2022.55549.2766.
114. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for
spinal cord injury repair. Biomaterials. 2021; 272:120771.
doi:10.1016/j.biomaterials.2021.120771.
115. Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord
Injury Repair. Front Bioeng Biotechnol. 2022; 10:847344.
doi:10.3389/fbioe.2022.847344.
116. Bedir T, Ulag S, Ustundag CB, Gunduz O. 3D bioprinting applications
in neural tissue engineering for spinal cord injury repair. Mater Sci
Eng C Mater Biol Appl. 2020; 110:110741.
doi:10.1016/j.msec.2020.110741.
117. Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for
Neural Tissue Engineering. Polymers (Basel). 2020; 12(8) doi:
10.3390/polym12081637.
118. Li JJ, Liu H, Zhu Y, et al. Animal Models for Treating Spinal Cord Injury
Using Biomaterials-Based Tissue Engineering Strategies. Tissue Eng
Part B Rev. 2022; 28(1):79-100. doi:10.1089/ten.TEB.2020.0267.
119. Choi EH, Gattas S, Brown NJ, et al. Epidural electrical stimulation for
spinal cord injury. Neural Regen Res. 2021; 16(12):2367-2375.
doi:10.4103/1673-5374.313017.
120. Golhasani-Keshtan F, Ebrahimzadeh MH, Fattahi AS, SoltaniMoghaddas SH, Omidi-kashani F. Validation and cross-cultural
adaptation of the Persian version of Craig Handicap Assessment and
Reporting Technique (CHART) short form. Disabil Rehabil. 2013;
35(22):1909-14. doi:10.3109/09638288.2013.768710. 121. Rajabi-Mashhadi MT, Mashhadinejad H, Ebrahimzadeh MH,
Golhasani-Keshtan F, Ebrahimi H, Zarei Z. The Zarit Caregiver Burden
Interview Short Form (ZBI-12) in spouses of Veterans with Chronic
Spinal Cord Injury, Validity and Reliability of the Persian Version.
Arch Bone Jt Surg. 2015; 3(1):56-63.
122. Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix
Provides Instructive Guidance Cues to Neural Cells and
Neuroregulatory Proteins in Neural Development and Repair. Int J
Mol Sci. 2021; 22(11) doi: 10.3390/ijms22115583.
123. Kosuri S, Borca CH, Mugnier H, et al. Machine-Assisted Discovery of
Chondroitinase ABC Complexes toward Sustained Neural
Regeneration. Adv Healthc Mater. 2022; 11(10):e2102101.
doi:10.1002/adhm.202102101.
124. Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage
Proteoglycan, Has Context-Dependent, Cell-Directive Properties in
Embryonic Development and Neurogenesis: Aggrecan Glycan Side
Chain Modifications Convey Interactive Biodiversity. Biomolecules.
2020; 10(9). doi:10.3390/biom10091244.
125. Muir E, De Winter F, Verhaagen J, Fawcett J. Recent advances in the
therapeutic uses of chondroitinase ABC. Exp Neurol. 2019;
321:113032. doi:10.1016/j.expneurol.2019.113032.
126. Jevans B, James ND, Burnside E, et al. Combined treatment with
enteric neural stem cells and chondroitinase ABC reduces spinal cord
lesion pathology. Stem Cell Res Ther. 2021; 12(1):10.
doi:10.1186/s13287-020-02031-9.
127. Woods W, Evans D, Mogas Barcons A, Tzerakis N, Adams C, Maitreyi
Chari D. Stem cell sprays for neurological injuries: a perspective.
Emerg Top Life Sci. 2021 Oct 29; 5(4):519-
522.doi:10.1042/ETLS20210113.
128. Azimifar MA, Salmasi Z, Doosti A, Babaei N, Hashemi M. Evaluation of
the efficiency of modified PAMAM dendrimer with low molecular
weight protamine peptide to deliver IL-12 plasmid into stem cells as
cancer therapy vehicles. Biotechnol Prog. 2021; 37(4):e3175.
doi:10.1002/btpr.3175.
129. Lee HL, Yeum CE, Lee H, et al. Peripheral Nerve-Derived Stem Cell
Spheroids Induce Functional Recovery and Repair after Spinal Cord
Injury in Rodents. Int J Mol Sci. 2021; 22(8) doi:
10.3390/ijms22084141.
130. Marinval N, Chew SY. Mechanotransduction assays for neural
regeneration strategies: A focus on glial cells. APL Bioeng. 2021;
5(2):021505. doi:10.1063/5.0037814.
131. Pașca SP, Arlotta P, Bateup HS, et al. A nomenclature consensus for
nervous system organoids and assembloids. Nature. 2022;
609(7929):907-910. doi:10.1038/s41586-022-05219-6.
132. Fan B, Wei Z, Feng S. Progression in translational research on spinal
cord injury based on microenvironment imbalance. Bone Res. 2022;
10(1):35. doi:10.1038/s41413-022-00199-9.
133. Awad BI, Carmody MA, Steinmetz MP. Potential role of growth
factors in the management of spinal cord injury. World Neurosurg.
2015; 83(1):120-31. doi:10.1016/j.wneu.2013.01.042.
134. Talifu Z, Qin C, Xin Z, et al. The Overexpression of Insulin-Like
Growth Factor-1 and Neurotrophin-3 Promote Functional Recovery
and Alleviate Spasticity after Spinal Cord Injury. Front Neurosci.
2022; 16:863793. doi:10.3389/fnins.2022.863793.
135. Cooke P, Janowitz H, Dougherty SE. Neuronal Redevelopment and the
Regeneration of Neuromodulatory Axons in the Adult Mammalian
Central Nervous System. Front Cell Neurosci. 2022; 16:872501.
doi:10.3389/fncel.2022.872501.
136. Gu Y, Wen G, Zhao H, Qi H, Yang Y, Hu T. Delivery of FGF10 by
implantable porous gelatin microspheres for treatment of spinal cord
injury. Mol Med Rep. 2023; 28(1) doi:10.3892/mmr.2023.13024.
137. Moshiri M, Hosseiniyan SM, Moallem SA, et al. The effects of vitamin
B (12) on the brain damages caused by methamphetamine in mice.
Iran J Basic Med Sci. 2018; 21(4):434-438.
doi:10.22038/IJBMS.2018.23362.5897.
138. Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, CouillardDespres S, Aigner L. Granulocyte colony-stimulating factor in
traumatic spinal cord injury. Drug Discov Today. 2021; 26(7):1642-
1655. doi:10.1016/j.drudis.2021.03.014.
139. Derakhshanrad N, Saberi H, Yekaninejad MS, Joghataei MT,
Sheikhrezaei A. Granulocyte-colony stimulating factor administration
for neurological improvement in patients with postrehabilitation
chronic incomplete traumatic spinal cord injuries: a double-blind
randomized controlled clinical trial. J Neurosurg Spine. 2018;
29(1):97-107. doi:10.3171/2017.11.SPINE17769.
140. Pelisch N, Rosas Almanza J, Stehlik KE, Aperi BV, Kroner A. CCL3
contributes to secondary damage after spinal cord injury. J
Neuroinflammation. 2020; 17(1):362. doi:10.1186/s12974-020-
02037-3.
141. Kim HN, McCrea MR, Li S. Advances in molecular therapies for
targeting pathophysiology in spinal cord injury. Expert Opin Ther
Targets. 2023; 27(3):171-187.
doi:10.1080/14728222.2023.2194532.
142. Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for
spinal cord injury. Biomed Pharmacother. 2022; 145:112430.
doi:10.1016/j.biopha.2021.112430.
143. Wang W, He D, Chen J, et al. Circular RNA Plek promotes fibrogenic
activation by regulating the miR-135b-5p/TGF-betaR1 axis after
spinal cord injury. Aging (Albany NY). 2021; 13(9):13211-13224.
doi:10.18632/aging.203002.
144. Hu M, Cao Z, Jiang D. The Effect of miRNA-Modified Exosomes in
Animal Models of Spinal Cord Injury: A meta-Analysis. Front Bioeng
Biotechnol. 2021; 9:819651. doi:10.3389/fbioe.2021.819651.
145. Shen Y, Cai J. The Importance of Using Exosome-Loaded miRNA for
the Treatment of Spinal Cord Injury. Mol Neurobiol. 2023; 60(2):447-
459. doi:10.1007/s12035-022-03088-8.
146. Liu XY, Guo JW, Kou JQ, Sun YL, Zheng XJ. Repair mechanism of
astrocytes and non-astrocytes in spinal cord injury. World J Clin
Cases. 2020; 8(5):854-863. doi:10.12998/wjcc.v8.i5.854.
147. Tran AP, Warren PM, Silver J. New insights into glial scar formation
after spinal cord injury. Cell Tissue Res. 2022; 387(3):319-336.
doi:10.1007/s00441-021-03477-w.
148. Costachescu B, Niculescu AG, Dabija MG, Teleanu RI, Grumezescu AM,
Eva L. Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci.
2022; 23(9) doi: 10.3390/ijms23094552.
149. Bao T, Li N, Chen H, et al. Drug-Loaded Zwitterion-Based
Nanomotors for the Treatment of Spinal Cord Injury. ACS Appl Mater
Interfaces. 2023; 15(27):32762-32771. doi:10.1021/acsami.3c05866.
150. Behroozi Z, Rahimi B, Hamblin MR, Nasirinezhad F, Janzadeh A,
Ramezani F. Injection of Cerium Oxide Nanoparticles to Treat Spinal
Cord Injury in Rats. J Neuropathol Exp Neurol.
2022;doi:10.1093/jnen/nlac026.
151. Murphy C, Thomas FP. Generative AI in spinal cord injury research
and care: Opportunities and challenges ahead. J Spinal Cord Med.
2023; 46(3):341-342. doi:10.1080/10790268.2023.2198926.
152. Khan O, Badhiwala JH, Grasso G, Fehlings MG. Use of Machine
Learning and Artificial Intelligence to Drive Personalized Medicine
Approaches for Spine Care. World Neurosurg. 2020; 140:512-518.
doi:10.1016/j.wneu.2020.04.022.
153. Marrotte EJ, Johnson K, Schweller RM, et al. Induction of
Neurogenesis and Angiogenesis in a Rat Hemisection Spinal Cord
Injury Model With Combined Neural Stem Cell, Endothelial
Progenitor Cell, and Biomimetic Hydrogel Matrix Therapy. Crit Care
Explor. 2021; 3(6):e0436. doi:10.1097/CCE.0000000000000436.
154. Ebrahimian M, Hashemi M, Etemad L, Salmasi Z. Thymoquinoneloaded mesenchymal stem cell-derived exosome as an efficient nanosystem against breast cancer cells. Iran J Basic Med Sci. 2022;
25(6):723-731. doi:10.22038/IJBMS.2022.64092.14116.
155. Fan L, Liu C, Chen X, et al. Exosomes-Loaded Electroconductive
Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord
Injury via Immunoregulation and Enhancement of Myelinated Axon
Growth. Adv Sci (Weinh). 2022; 9(13):e2105586.
doi:10.1002/advs.202105586.
156. Senger JB, Chan AWM, Chan KM, et al. Conditioning Electrical Stimulation Is Superior to Postoperative Electrical Stimulation in
Enhanced Regeneration and Functional Recovery Following Nerve
Graft Repair. Neurorehabil Neural Repair. 2020; 34(4):299-308.
doi:10.1177/1545968320905801.
157. Fadeev FO, Bashirov FV, Markosyan VA, et al. Combination of
epidural electrical stimulation with ex vivo triple gene therapy for
spinal cord injury: a proof of principle study. Neural Regen Res. 2021;
16(3):550-560. doi:10.4103/1673-5374.293150.
158. Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment
for spinal cord injury: a sword of neuroregeneration upon
neuromodulation. Neural Regen Res. 2020; 15(8):1437-1450.
doi:10.4103/1673-5374.274332.
159. Griffin JM, Bradke F. Therapeutic repair for spinal cord injury:
combinatory approaches to address a multifaceted problem. EMBO
Mol Med. 2020; 12(3):e11505. doi:10.15252/emmm.201911505.
160. Khaing ZZ, Chen JY, Safarians G, et al. Clinical Trials Targeting
Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci.
2023; 24(4) doi: 10.3390/ijms24043824.