Recent Advances in the Treatment of Spinal Cord Injury

Document Type : CURRENT CONCEPTS REVIEW

Authors

1 Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran - Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran - Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

4 Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran - Department of Orthopedic Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

5 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran - Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Spinal cord injury (SCI) is a complex, multifaceted, progressive, and yet incurable complication that 
can cause irreversible damage to the individual, family, and society. In recent years strategies for the 
management and rehabilitation of SCI besides axonal regeneration, remyelination, and neuronal 
plasticity of the injured spinal cord have significantly improved. Although most of the current research 
and therapeutic advances have been made in animal models, so far, no specific and complete treatment 
has been reported for SCI in humans. The failure to treat this complication has been due to the inherent 
neurological complexity and the structural, cellular, molecular, and biochemical characteristics of spinal 
cord injury. In this review, in addition to elucidating the causes of spinal cord injury from a molecular 
and pathophysiological perspective, the complexity and drawbacks of neural regeneration that lead to 
the failure in SCI treatment are described. Also, recent advances and cutting -edge strategies in most 
areas of SCI treatment are presented. 
 Level of evidence: I

Keywords

Main Subjects


1. Bajjig A, Cayetanot F, Taylor JA, Bodineau L, Vivodtzev I. Serotonin 1A 
Receptor Pharmacotherapy and Neuroplasticity in Spinal Cord Injury. 
Pharmaceuticals (Basel). 2022; 15(4).doi:10.3390/ph15040460.
2. Adigun OO, Reddy V, Varacallo M. Anatomy, Back, Spinal Cord. 
StatPearls. 2022.
3. Bilchak JN, Caron G, Cote MP. Exercise-Induced Plasticity in Signaling 
Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J 
Mol Sci. 2021; 22(9).doi:10.3390/ijms22094858.
4. Ebrahimpour A, Razi M, Mortazavi SJ, et al. Job satisfaction, Career 
Burnout, and Work-Related Well-Being Prevalence among 
Orthopedic Surgeons: A Nationwide Study. Arch Bone Jt Surg. 2023; 
11(4):293-300. doi:10.22038/ABJS.2022.66683.3180.
5. Khan YS, Lui F. Neuroanatomy, Spinal Cord. InStatPearls [Internet] 
2022. StatPearls Publishing.
6. Ebrahimzadeh MH, Makhmalbaf H, Soltani-Moghaddas SH, Mazloumi 
SM. The spinal cord injury quality-of-life-23 questionnaire, Iranian 
validation study. J Res Med Sci. 2014; 19(4):349-54. 
7. Ebrahimzadeh MH, Shojaei BS, Golhasani-Keshtan F, SoltaniMoghaddas SH, Fattahi AS, Mazloumi SM. Quality of life and the 
related factors in spouses of veterans with chronic spinal cord injury. 
Health Qual Life Outcomes. 2013; 11:48. doi:10.1186/1477-7525-11-
48.
8. Neural Injury and Repair Research Group. Available at: 
https://neurosciences.ucsd.edu/research/interest-groups/neuralinjury-repair.html. Accessed, 2021.
9. Ebrahimzadeh MH, Soltani-Moghaddas SH, Birjandinejad A, OmidiKashani F, Bozorgnia S. Quality of life among veterans with chronic 
spinal cord injury and related variables. Arch Trauma Res. 2014; 
3(2):e17917. doi:10.5812/atr.17917.
10. Barbiellini Amidei C, Salmaso L, Bellio S, Saia M. Epidemiology of 
traumatic spinal cord injury: a large population-based study. Spinal 
Cord. 2022; 60(9):812-819.doi:10.1038/s41393-022-00795-w.
11. Khadour FA, Khadour YA, Meng L, Lixin C, Xu T. Epidemiological 
features of traumatic spinal cord injury in Wuhan, China. J Orthop 
Surg Res. 2023; 18(1):72. doi:10.1186/s13018-023-03554-6.
12. Ebrahimzadeh MH, Golhasani-Keshtan F, Shojaee BS. Correlation 
between health-related quality of life in veterans with chronic spinal 
cord injury and their caregiving spouses. Arch Trauma Res. 2014; 
3(4):e16720. doi:10.5812/atr.16720.
13. Abdelrahman S, Ireland A, Winter EM, Purcell M, Coupaud S. 
Osteoporosis after spinal cord injury: aetiology, effects and 
therapeutic approaches. J Musculoskelet Neuronal Interact. 2021; 
21(1):26-50. 
14. Ebrahimzadeh MH, Shojaee BS, Golhasani-Keshtan F, Moharari F, 
Kachooei AR, Fattahi AS. Depression, anxiety and quality of life in 
caregiver spouses of veterans with chronic spinal cord injury. Iran J Psychiatry. 2014; 9(3):133-6. 
15. Lv B, Zhang X, Yuan J, et al. Biomaterial-supported MSC 
transplantation enhances cell-cell communication for spinal cord 
injury. Stem Cell Res Ther. 2021; 12(1):36. doi:10.1186/s13287-020-
02090-y.
16. Domingues HS, Portugal CC, Socodato R, Relvas JB. Corrigendum: 
Oligodendrocyte, Astrocyte and Microglia Crosstalk in Myelin 
Development, Damage, and Repair. Front Cell Dev Biol. 2016; 4:79. 
doi:10.3389/fcell.2016.00079.
17. Uchida K, Nakamura M, Ozawa H, Katoh S, Toyama Y, eds. 
Neuroprotection and regeneration of the spinal cord. 1st ed. Springer 
Tokyo; 2014.
18. Lescaudron L, Rossignol J, Dunbar GL,eds. Stem Cells and 
Neurodegenerative Diseases. 1st ed. Routledge Taylor & Francis 
Group; 2014.
19. Faridaalee G, Keyghobadi Khajeh F. Serum and Cerebrospinal Fluid 
Levels of S-100beta Is A Biomarker for Spinal Cord Injury; a 
Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2019; 
7(1):e19. 
20. Ganjeifar B, Mehrad-Majd H, Barforooshi AG, Baharvahdat H, 
Zabihyan S, Moradi A. Diagnostic Value of Computed Tomography 
Angiography in Confirmation of Brain Death. World Neurosurg. 
2023:178:e275-e281. doi:10.1016/j.wneu.2023.07.042.
21. Molinaro F, La Zazzera PL, Ferraris M, Morbidoni G, Zaca D , Rinaldis 
A, Carpanese F, Cioffi A, Naddeo F, Boccaccini L, Bergui M. Chapter 
4 - MRI as an imaging tool for in vivo noninvasive morphological and 
(partially) functional examination of injured spinal cord. In: Spinal 
Cord Injury (SCI) Repair Strategies. 1st ed. Perale G, Rossi F, eds.WP 
Publishing; 2020.
22. Seo JH, Kim HJ, Lee KY, Wang L, Park JW. The Prognostic Factors of 
Neurologic Recovery in Spinal Cord Injury. J Korean Soc Spine Surg. 
2015; 22(1):1-7. 
23. Beattie MS. Inflammation and apoptosis: linked therapeutic targets in 
spinal cord injury. Trends Mol Med. 2004; 10(12):580-3. 
doi:10.1016/j.molmed.2004.10.006.
24. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of 
acute spinal cord injury pathophysiology and emerging therapies: 
promise on the horizon. Neurosurg Focus. 2008; 25(5):E2. 
doi:10.3171/FOC.2008.25.11.E2.
25. Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus 
on Spinal Cord Injury. Int J Mol Sci. 2023; 24(8) doi: 
10.3390/ijms24087159.
26. Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury 
pathogenesis and therapy. Cell Prolif. 2021; 54(3):e12992. 
doi:10.1111/cpr.12992.
27. Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal Cord Injury: 
Pathophysiology, Multimolecular Interactions, and Underlying 
Recovery Mechanisms. Int J Mol Sci. 2020; 21(20). 
doi:10.3390/ijms21207533.
28. Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms 
and therapeutic interventions. Signal Transduct Target Ther. 2023; 
8(1):245. doi:10.1038/s41392-023-01477-6.
29. Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current 
Advancements in Spinal Cord Injury Research-Glial Scar Formation 
and Neural Regeneration. Cells. 2023; 12(6) doi: 
10.3390/cells12060853.
30. Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids 
central nervous system axon regeneration. Nature. 2016; 
532(7598):195-200. doi:10.1038/nature17623.
31. Carelli S, Giallongo T, Rey F, et al. Neuroprotection, Recovery of 
Function and Endogenous Neurogenesis in Traumatic Spinal Cord 
Injury Following Transplantation of Activated Adipose Tissue. Cells. 
2019; 8(4).doi:10.3390/cells8040329.
32. Yari D, Ehsanbakhsh Z, Validad MH, Langroudi FH. Association of 
TIMP-1 and COL4A4 Gene Polymorphisms with Keratoconus in an 
Iranian Population. J Ophthalmic Vis Res. 2020; 15(3):299-307. 
doi:10.18502/jovr.v15i3.7448.
33. Zhang Q, Shi B, Ding J, et al. Polymer scaffolds facilitate spinal cord 
injury repair. Acta Biomater. 2019; 88:57-77. 
doi:10.1016/j.actbio.2019.01.056.
34. Yousefifard M, Vazirizadeh-Mahabadi MH, Haghani L, et al. Early 
General Hypothermia Improves Motor Function after Spinal Cord 
Injury in Rats; a Systematic Review and Meta-Analysis. Arch Acad 
Emerg Med. 2020; 8(1):e80. 
35. Venkatesh K, Ghosh SK, Mullick M, Manivasagam G, Sen D. Spinal cord 
injury: pathophysiology, treatment strategies, associated challenges, 
and future implications. Cell Tissue Res. 2019; 377(2):125-151. 
doi:10.1007/s00441-019-03039-1.
36. Lee BJ, Jeong JH. Review: Steroid Use in Patients with Acute Spinal 
Cord Injury and Guideline Update. Korean J Neurotrauma. 2022; 
18(1):22-30. doi:10.13004/kjnt.2022.18.e21.
37. Zhang Y, Al Mamun A, Yuan Y, et al. Acute spinal cord injury: 
Pathophysiology and pharmacological intervention (Review). Mol 
Med Rep. 2021; 23(6) doi:10.3892/mmr.2021.12056.
38. Li Y, Gu R, Zhu Q, Liu J. Changes of Spinal Edema and Expression of 
Aquaporin 4 in Methylprednisolone-treated Rats with Spinal Cord 
Injury. Ann Clin Lab Sci. 2018; 48(4):453-459. 
39. Roohbakhsh A, Etemad L, Karimi G. Resolvin D1: A key endogenous 
inhibitor of neuroinflammation. Biofactors. 2022; 48(5):1005-1026. 
doi:10.1002/biof.1891.
40. Park A, Anderson D, Battaglino RA, Nguyen N, Morse LR. Ibuprofen 
use is associated with reduced C-reactive protein and interleukin-6 
levels in chronic spinal cord injury. J Spinal Cord Med. 2022; 
45(1):117-125. doi:10.1080/10790268.2020.1773029.
41. Hayta E, Elden H. Acute spinal cord injury: A review of 
pathophysiology and potential of non-steroidal anti-inflammatory 
drugs for pharmacological intervention. J Chem Neuroanat. 2018; 
87:25-31. doi:10.1016/j.jchemneu.2017.08.001.
42. Roohbakhsh A, Moshiri M, Salehi Kakhki A, Iranshahy M, Amin F, 
Etemad L. Thymoquinone abrogates methamphetamine-induced 
striatal neurotoxicity and hyperlocomotor activity in mice. Res Pharm 
Sci. 2021; 16(4):391-399. doi:10.4103/1735-5362.319577.
43. Fehlings MG, Wilson JR, Tetreault LA, et al. A Clinical Practice 
Guideline for the Management of Patients with Acute Spinal Cord 
Injury: Recommendations on the Use of Methylprednisolone Sodium 
Succinate. Global Spine J. 2017; 7(3 Suppl):203S-211S. 
doi:10.1177/2192568217703085.
44. Kupfer M, Formal CS. Non-opioid pharmacologic treatment of chronic 
spinal cord injury-related pain. J Spinal Cord Med. 2022; 45(2):163-
172. doi:10.1080/10790268.2020.1730109.
45. Yousefifard M, Hashemi B, Forouzanfar MM, Khatamian Oskooi R, 
Madani Neishaboori A, Jalili Khoshnoud R. Ultra-early Spinal 
Decompression Surgery Can Improve Neurological Outcome of 
Complete Cervical Spinal Cord Injury; a Systematic Review and Metaanalysis. Arch Acad Emerg Med. 2022; 10(1):e11. 
doi:10.22037/aaem.v10i1.1471.
46. Ma Y, Zhu Y, Zhang B, Wu Y, Liu X, Zhu Q. The Impact of Urgent (<8 
Hours) Decompression on Neurologic Recovery in Traumatic Spinal 
Cord Injury: A Meta-Analysis. World Neurosurg. 2020; 140:e185-
e194. doi:10.1016/j.wneu.2020.04.230.
47. Ter Wengel PV, Martin E, De Witt Hamer PC, et al. Impact of Early 
(<24 h) Surgical Decompression on Neurological Recovery in 
Thoracic Spinal Cord Injury: A Meta-Analysis. J Neurotrauma. 2019; 
36(18):2609-2617. doi:10.1089/neu.2018.6277.
48. Badhiwala JH, Wilson JR, Witiw CD, et al. The influence of timing of 
surgical decompression for acute spinal cord injury: a pooled analysis 
of individual patient data. Lancet Neurol. 2021; 20(2):117-126. 
doi:10.1016/S1474-4422(20)30406-3.
49. Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve 
grafts and their application in peripheral nerve regeneration. Prog 
Neurobiol. 2011; 93(2):204-30. 
doi:10.1016/j.pneurobio.2010.11.002.
50. Leckenby JI, Furrer C, Haug L, Juon Personeni B, Vogelin E. A 
Retrospective Case Series Reporting the Outcomes of Avance Nerve Allografts in the Treatment of Peripheral Nerve Injuries. Plast 
Reconstr Surg. 2020; 145(2):368e-381e. 
doi:10.1097/PRS.0000000000006485.
51. Liu Y, Xie JX, Niu F, et al. Surgical intervention combined with weightbearing walking training improves neurological recoveries in 320 
patients with clinically complete spinal cord injury: a prospective 
self-controlled study. Neural Regen Res. 2021; 16(5):820-829. 
doi:10.4103/1673-5374.297080.
52. Mansour NM, Pino IP, Freeman D, et al. Advances in Epidural Spinal 
Cord Stimulation to Restore Function after Spinal Cord Injury: History 
and Systematic Review. J Neurotrauma. 2022; 39(15-16):1015-
1029.doi:10.1089/neu.2022.0007.
53. O'Connell NE, Ferraro MC, Gibson W, et al. Implanted spinal 
neuromodulation interventions for chronic pain in adults. Cochrane 
Database Syst Rev. 2021; 12:CD013756. 
doi:10.1002/14651858.CD013756.pub2.
54. Qu H, Zhao Y. Advances in tissue state recognition in spinal surgery: a 
review. Front Med. 2021; 15(4):575-584. doi:10.1007/s11684-020-
0816-3.
55. Shahpari O, Mortazavi J, Ebrahimzadeh MH, Bagheri F, Mousavian A. 
Role of Hip Arthroscopy in the Treatment of Avascular Necrosis of the 
Hip: A Systematic Review. Arch Bone Jt Surg. 2022; 10(6):480-489. 
doi:10.22038/ABJS.2021.58534.2894.
56. Xiong F, Fu C, Zhang Q, et al. The Effect of Different Acupuncture 
Therapies on Neurological Recovery in Spinal Cord Injury: A 
Systematic Review and Network Meta-Analysis of Randomized 
Controlled Trials. Evid Based Complement Alternat Med. 2019; 
2019:2371084. doi:10.1155/2019/2371084.
57. Tang H, Guo Y, Zhao Y, et al. Effects and Mechanisms of Acupuncture 
Combined with Mesenchymal Stem Cell Transplantation on Neural 
Recovery after Spinal Cord Injury: Progress and Prospects. Neural 
Plast. 2020; 2020:8890655. doi:10.1155/2020/8890655.
58. Zeng YS, Ding Y, Xu HY, et al. Electro-acupuncture and its combination 
with adult stem cell transplantation for spinal cord injury treatment: 
A summary of current laboratory findings and a review of literature. 
CNS Neurosci Ther. 2022; 28(5):635-647. doi:10.1111/cns.13813.
59. van der Scheer JW, Totosy de Zepetnek JO, Blauwet C, et al. 
Assessment of body composition in spinal cord injury: A scoping 
review. PLoS One. 2021; 16(5):e0251142. 
doi:10.1371/journal.pone.0251142.
60. Ginis KAM, van der Scheer JW, Latimer-Cheung AE, et al. Correction: 
Evidence-based scientific exercise guidelines for adults with spinal 
cord injury: an update and a new guideline. Spinal Cord. 2018; 
56(11):1114. doi:10.1038/s41393-018-0194-8.
61. van der Scheer JW, Goosey-Tolfrey VL, Valentino SE, Davis GM, Ho CH. 
Functional electrical stimulation cycling exercise after spinal cord 
injury: a systematic review of health and fitness-related outcomes. J 
Neuroeng Rehabil. 2021; 18(1):99. doi:10.1186/s12984-021-00882-
8.
62. Lovas J, Tran Y, Middleton J, Bartrop R, Moore N, Craig A. Managing 
pain and fatigue in people with spinal cord injury: a randomized 
controlled trial feasibility study examining the efficacy of massage 
therapy. Spinal Cord. 2017; 55(2):162-166. doi:10.1038/sc.2016.156.
63. Franz S, Schulz B, Wang H, et al. Management of pain in individuals 
with spinal cord injury: Guideline of the German-Speaking Medical 
Society for Spinal Cord Injury. Ger Med Sci. 2019; 17:Doc05. 
doi:10.3205/00027.1
64. Palladino L, Ruotolo I, Berardi A, Carlizza A, Galeoto G. Efficacy of 
aquatic therapy in people with spinal cord injury: a systematic review 
and meta-analysis. Spinal Cord. 2023; 61(6):317-322. 
doi:10.1038/s41393-023-00892-4.
65. Vafaei-Nezhad S, Pour Hassan M, Noroozian M, et al. A Review of LowLevel Laser Therapy for Spinal Cord Injury: Challenges and Safety. J 
Lasers Med Sci. 2020; 11(4):363-368. doi:10.34172/jlms.2020.59.
66. Kim J, Kim EH, Lee K, et al. Low-Level Laser Irradiation Improves 
Motor Recovery after Contusive Spinal Cord Injury in Rats. Tissue Eng 
Regen Med. 2017; 14(1):57-64. doi:10.1007/s13770-016-0003-4.
67. Tehrani MR, Nazary-Moghadam S, Zeinalzadeh A, Moradi A, MehradMajd H, Sahebalam M. Efficacy of low-level laser therapy on pain, 
disability, pressure pain threshold, and range of motion in patients 
with myofascial neck pain syndrome: a systematic review and metaanalysis of randomized controlled trials. Lasers Med Sci. 2022; 
37(9):3333-3341.doi:10.1007/s10103-022-03626-9.
68. Farid MF, Y SA, Rizk H. Stem cell treatment trials of spinal cord 
injuries in animals. Auton Neurosci. 2021; 238:102932. 
doi:10.1016/j.autneu.2021.102932.
69. Huang L, Fu C, Xiong F, He C, Wei Q. Stem Cell Therapy for Spinal Cord 
Injury. Cell Transplant. 2021; 30:963689721989266. 
doi:10.1177/0963689721989266.
70. Nori S, Nakamura M, Okano H. Plasticity and regeneration in the 
injured spinal cord after cell transplantation therapy. Prog Brain Res. 
2017; 231:33-56. doi:10.1016/bs.pbr.2016.12.007.
71. Chhabra HS, Sarda K. Clinical translation of stem cell based 
interventions for spinal cord injury - Are we there yet? Adv Drug 
Deliv Rev. 2017; 120:41-49. doi:10.1016/j.addr.2017.09.021.
72. Lowry LE, Herzig MC, Christy BA, et al. Neglected No More: Emerging 
Cellular Therapies in Traumatic Injury. Stem Cell Rev Rep. 2021; 
17(4):1194-1214.doi:10.1007/s12015-020-10086-7.
73. Takami T, Shimokawa N, Parthiban J, Zileli M, Ali S. Pharmacologic 
and Regenerative Cell Therapy for Spinal Cord Injury: WFNS Spine 
Committee Recommendations. Neurospine. 2020; 17(4):785-796. 
doi:10.14245/ns.2040408.204.
74. Khan S, Mafi P, Mafi R, Khan W. A Systematic Review of Mesenchymal 
Stem Cells in Spinal Cord Injury, Intervertebral Disc Repair and Spinal 
Fusion. Curr Stem Cell Res Ther. 2018; 13(4):316-323. 
doi:10.2174/1574888X11666170907120030.
75. Kong D, Feng B, Amponsah AE, et al. hiPSC-derived NSCs effectively 
promote the functional recovery of acute spinal cord injury in mice. 
Stem Cell Res Ther. 2021; 12(1):172. doi:10.1186/s13287-021-
02217-9.
76. Zheng W, Li Q, Zhao C, Da Y, Zhang HL, Chen Z. Differentiation of Glial 
Cells From hiPSCs: Potential Applications in Neurological Diseases 
and Cell Replacement Therapy. Front Cell Neurosci. 2018; 12:239. 
doi:10.3389/fncel.2018.00239.
77. Wang X, Kuang N, Chen Y, et al. Transplantation of olfactory 
ensheathing cells promotes the therapeutic effect of neural stem cells 
on spinal cord injury by inhibiting necrioptosis. Aging (Albany NY). 
2021; 13(6):9056-9070. doi:10.18632/aging.202758.
78. Monje PV, Deng L, Xu XM. Human Schwann Cell Transplantation for 
Spinal Cord Injury: Prospects and Challenges in Translational 
Medicine. Front Cell Neurosci. 2021; 15:690894. 
doi:10.3389/fncel.2021.690894.
79. Beatriz M, Vilaca R, Lopes C. Exosomes: Innocent Bystanders or 
Critical Culprits in Neurodegenerative Diseases. Front Cell Dev Biol. 
2021; 9:635104. doi:10.3389/fcell.2021.635104.
80. Pishavar E, Oroojalian F, Salmasi Z, Hashemi E, Hashemi M. Recent 
advances of dendrimer in targeted delivery of drugs and genes to 
stem cells as cellular vehicles. Biotechnol Prog. 2021; 37(4):e3174. 
doi:10.1002/btpr.3174.
81. Upadhyayula PS, Martin JR, Rennert RC, Ciacci JD. Review of operative 
considerations in spinal cord stem cell therapy. World J Stem Cells. 
2021; 13(2):168-176. doi:10.4252/wjsc.v13.i2.168.
82. Honmou O, Yamashita T, Morita T, et al. Intravenous infusion of auto 
serum-expanded autologous mesenchymal stem cells in spinal cord 
injury patients: 13 case series. Clin Neurol Neurosurg. 2021; 
203:106565. doi:10.1016/j.clineuro.2021.106565.
83. Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the 
treatment of spinal cord injury: Mechanisms, current advances and 
future challenges. Front Immunol. 2023; 14:1141601. 
doi:10.3389/fimmu.2023.1141601.
84. Bartlett RD, Burley S, Ip M, Phillips JB, Choi D. Cell Therapies for 
Spinal Cord Injury: Trends and Challenges of Current Clinical Trials. 
Neurosurgery. 2020; 87(4):E456-E472. 
doi:10.1093/neuros/nyaa149.85. Shang Z, Wang R, Li D, et al. Spinal Cord Injury: A Systematic Review 
and Network Meta-Analysis of Therapeutic Strategies Based on 15 
Types of Stem Cells in Animal Models. Front Pharmacol. 2022; 
13:819861. doi:10.3389/fphar.2022.819861.
86. Pang QM, Chen SY, Fu SP, et al. Regulatory Role of Mesenchymal Stem 
Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res. 
2022; 15:573-593. doi:10.2147/JIR.S349572.
87. Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU. Stem cell-based cell 
therapy for spinal cord injury. Cell Transplant. 2007; 16(4):355-64. 
doi:10.3727/000000007783464885.
88. Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for 
peripheral nerve and spinal cord regeneration. Bioact Mater. 2021; 
6(11):4141-4160. doi:10.1016/j.bioactmat.2021.04.019.
89. saberi A, Khodaverdi E, Kamali H, et al. Fabrication and 
Characterization of Biomimetic Electrospun Cartilage Decellularized 
Matrix (CDM)/Chitosan Nanofiber Hybrid for Tissue Engineering 
Applications: Box-Behnken Design for Optimization. Journal of 
Polymers and the Environment. 2023:1-20.doi:10.1007/s10924-023-
03065-9.
90. Ashammakhi N, Kim HJ, Ehsanipour A, et al. Regenerative Therapies 
for Spinal Cord Injury. Tissue Eng Part B Rev. 2019; 25(6):471-491. 
doi:10.1089/ten.TEB.2019.0182.
91. Elkhenany H, Bonilla P, Giraldo E, et al. A Hyaluronic Acid Demilune 
Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human 
Neural Precursor Cells and Curcumin for Surface Capping of Spinal 
Cord Injuries. Biomedicines. 2021; 9(12) doi: 
10.3390/biomedicines9121928.
92. Liu S, Sun X, Wang T, et al. Nano-fibrous and ladder-like multi-channel 
nerve conduits: Degradation and modification by gelatin. Mater Sci 
Eng C Mater Biol Appl. 2018; 83:130-142. 
doi:10.1016/j.msec.2017.11.020.
93. Li R, Liu H, Huang H, et al. Chitosan conduit combined with hyaluronic 
acid prevent sciatic nerve scar in a rat model of peripheral nerve 
crush injury. Mol Med Rep. 2018; 17(3):4360-4368. 
doi:10.3892/mmr.2018.8388.
94. Martinez-Ramos C, Doblado LR, Mocholi EL, et al. Biohybrids for 
spinal cord injury repair. J Tissue Eng Regen Med. 2019; 13(3):509-
521. doi:10.1002/term.2816.
95. Licht C, Rose JC, Anarkoli AO, et al. Synthetic 3D PEG-Anisogel 
Tailored with Fibronectin Fragments Induce Aligned Nerve 
Extension. Biomacromolecules. 2019; 20(11):4075-4087. 
doi:10.1021/acs.biomac.9b00891.
96. Walsh CM, Wychowaniec JK, Brougham DF, Dooley D. Functional 
hydrogels as therapeutic tools for spinal cord injury: New 
perspectives on immunopharmacological interventions. Pharmacol 
Ther. 2022; 234:108043. doi:10.1016/j.pharmthera.2021.108043.
97. Kubinová Š. Chapter 7 - Soft and rigid scaffolds for spinal cord injury 
regeneration. In: Spinal Cord Injury (SCI) Repair Strategies. Perale G, 
Rossi F, eds.Woodhead Publishing; 2020.
98. Yari D, Movaffagh J, Ebrahimzadeh MH, Saberi A, Qujeq D, Moradi A. 
Biomimetic ECM-Based Hybrid Scaffold for Cartilage Tissue 
Engineering Applications. Journal of Polymers and the Environment. 
2024:1-9.doi:10.1007/s10924-024-03230-8.
99. Zhang S, Wang XJ, Li WS, et al. Polycaprolactone/polysialic acid 
hybrid, multifunctional nanofiber scaffolds for treatment of spinal 
cord injury. Acta Biomater. 2018; 77:15-27. 
doi:10.1016/j.actbio.2018.06.038.
100. Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell 
distribution and axon orientation determine local spinal cord 
mechanical properties. Biophys J. 2015; 108(9):2137-47. 
doi:10.1016/j.bpj.2015.03.039.
101. Hu J, Jin LQ, Selzer ME. Inhibition of central axon regeneration: 
perspective from chondroitin sulfate proteoglycans in lamprey spinal 
cord injury. Neural Regen Res. 2022; 17(9):1955-1956. 
doi:10.4103/1673-5374.335144.
102. Liu S, Xie YY, Wang B. Role and prospects of regenerative 
biomaterials in the repair of spinal cord injury. Neural Regen Res. 
2019; 14(8):1352-1363. doi:10.4103/1673-5374.253512.
103. Xiang W, Cao H, Tao H, et al. Applications of chitosan-based 
biomaterials: From preparation to spinal cord injury neuroprosthetic 
treatment. Int J Biol Macromol. 2023; 230:123447. 
doi:10.1016/j.ijbiomac.2023.123447.
104. Feng C, Deng L, Yong YY, et al. The Application of Biomaterials in 
Spinal Cord Injury. Int J Mol Sci. 2023; 24(1) doi: 
10.3390/ijms24010816.
105. Wang SX, Lu YB, Wang XX, et al. Graphene and graphene-based 
materials in axonal repair of spinal cord injury. Neural Regen Res. 
2022; 17(10):2117-2125. doi:10.4103/1673-5374.335822.
106. Luo Y, Fan L, Liu C, et al. An injectable, self-healing, electroconductive 
extracellular matrix-based hydrogel for enhancing tissue repair after 
traumatic spinal cord injury. Bioact Mater. 2022; 7:98-111. 
doi:10.1016/j.bioactmat.2021.05.039.
107. Luo J, Shi X, Li L, et al. An injectable and self-healing hydrogel with 
controlled release of curcumin to repair spinal cord injury. Bioact 
Mater. 2021; 6(12):4816-4829. 
doi:10.1016/j.bioactmat.2021.05.022.
108. Bousalis D, McCrary MW, Vaughn N, et al. Decellularized peripheral 
nerve as an injectable delivery vehicle for neural applications. J 
Biomed Mater Res A. 2022; 110(3):595-611. 
doi:10.1002/jbm.a.37312.
109. Xu Y, Zhou J, Liu C, et al. Understanding the role of tissue-specific 
decellularized spinal cord matrix hydrogel for neural 
stem/progenitor cell microenvironment reconstruction and spinal 
cord injury. Biomaterials. 2021; 268:120596. 
doi:10.1016/j.biomaterials.2020.120596.
110. Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, Rose JC, Haraszti T, 
De Laporte L. An Injectable Hybrid Hydrogel with Oriented Short 
Fibers Induces Unidirectional Growth of Functional Nerve Cells. 
Small. 2017; 13(36) doi:10.1002/smll.201702207.
111. Agarwal G, Roy A, Kumar H, Srivastava A. Graphene-collagen cryogel 
controls neuroinflammation and fosters accelerated axonal 
regeneration in spinal cord injury. Biomater Adv. 2022; 139:212971. 
doi:10.1016/j.bioadv.2022.212971.
112. Zhang L, Li Z, Mao L, Wang H. Circular RNA in Acute Central Nervous 
System Injuries: A New Target for Therapeutic Intervention. Front 
Mol Neurosci. 2022; 15:816182. doi:10.3389/fnmol.2022.816182.
113. Yari D, Ebrahimzadeh MH, Movaffagh J, et al. Biochemical Aspects of 
Scaffolds for Cartilage Tissue Engineering; from Basic Science to 
Regenerative Medicine. Arch Bone Jt Surg. 2022; 10(3):229-244. 
doi:10.22038/ABJS.2022.55549.2766.
114. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for 
spinal cord injury repair. Biomaterials. 2021; 272:120771. 
doi:10.1016/j.biomaterials.2021.120771.
115. Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord 
Injury Repair. Front Bioeng Biotechnol. 2022; 10:847344. 
doi:10.3389/fbioe.2022.847344.
116. Bedir T, Ulag S, Ustundag CB, Gunduz O. 3D bioprinting applications 
in neural tissue engineering for spinal cord injury repair. Mater Sci 
Eng C Mater Biol Appl. 2020; 110:110741. 
doi:10.1016/j.msec.2020.110741.
117. Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for 
Neural Tissue Engineering. Polymers (Basel). 2020; 12(8) doi: 
10.3390/polym12081637.
118. Li JJ, Liu H, Zhu Y, et al. Animal Models for Treating Spinal Cord Injury 
Using Biomaterials-Based Tissue Engineering Strategies. Tissue Eng 
Part B Rev. 2022; 28(1):79-100. doi:10.1089/ten.TEB.2020.0267.
119. Choi EH, Gattas S, Brown NJ, et al. Epidural electrical stimulation for 
spinal cord injury. Neural Regen Res. 2021; 16(12):2367-2375. 
doi:10.4103/1673-5374.313017.
120. Golhasani-Keshtan F, Ebrahimzadeh MH, Fattahi AS, SoltaniMoghaddas SH, Omidi-kashani F. Validation and cross-cultural 
adaptation of the Persian version of Craig Handicap Assessment and 
Reporting Technique (CHART) short form. Disabil Rehabil. 2013;
35(22):1909-14. doi:10.3109/09638288.2013.768710. 121. Rajabi-Mashhadi MT, Mashhadinejad H, Ebrahimzadeh MH, 
Golhasani-Keshtan F, Ebrahimi H, Zarei Z. The Zarit Caregiver Burden 
Interview Short Form (ZBI-12) in spouses of Veterans with Chronic 
Spinal Cord Injury, Validity and Reliability of the Persian Version. 
Arch Bone Jt Surg. 2015; 3(1):56-63. 
122. Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix 
Provides Instructive Guidance Cues to Neural Cells and 
Neuroregulatory Proteins in Neural Development and Repair. Int J 
Mol Sci. 2021; 22(11) doi: 10.3390/ijms22115583.
123. Kosuri S, Borca CH, Mugnier H, et al. Machine-Assisted Discovery of 
Chondroitinase ABC Complexes toward Sustained Neural 
Regeneration. Adv Healthc Mater. 2022; 11(10):e2102101.
doi:10.1002/adhm.202102101.
124. Hayes AJ, Melrose J. Aggrecan, the Primary Weight-Bearing Cartilage 
Proteoglycan, Has Context-Dependent, Cell-Directive Properties in 
Embryonic Development and Neurogenesis: Aggrecan Glycan Side 
Chain Modifications Convey Interactive Biodiversity. Biomolecules. 
2020; 10(9). doi:10.3390/biom10091244.
125. Muir E, De Winter F, Verhaagen J, Fawcett J. Recent advances in the 
therapeutic uses of chondroitinase ABC. Exp Neurol. 2019; 
321:113032. doi:10.1016/j.expneurol.2019.113032.
126. Jevans B, James ND, Burnside E, et al. Combined treatment with 
enteric neural stem cells and chondroitinase ABC reduces spinal cord 
lesion pathology. Stem Cell Res Ther. 2021; 12(1):10. 
doi:10.1186/s13287-020-02031-9.
127. Woods W, Evans D, Mogas Barcons A, Tzerakis N, Adams C, Maitreyi 
Chari D. Stem cell sprays for neurological injuries: a perspective. 
Emerg Top Life Sci. 2021 Oct 29; 5(4):519-
522.doi:10.1042/ETLS20210113.
128. Azimifar MA, Salmasi Z, Doosti A, Babaei N, Hashemi M. Evaluation of 
the efficiency of modified PAMAM dendrimer with low molecular 
weight protamine peptide to deliver IL-12 plasmid into stem cells as 
cancer therapy vehicles. Biotechnol Prog. 2021; 37(4):e3175. 
doi:10.1002/btpr.3175.
129. Lee HL, Yeum CE, Lee H, et al. Peripheral Nerve-Derived Stem Cell 
Spheroids Induce Functional Recovery and Repair after Spinal Cord 
Injury in Rodents. Int J Mol Sci. 2021; 22(8) doi: 
10.3390/ijms22084141.
130. Marinval N, Chew SY. Mechanotransduction assays for neural 
regeneration strategies: A focus on glial cells. APL Bioeng. 2021; 
5(2):021505. doi:10.1063/5.0037814.
131. Pașca SP, Arlotta P, Bateup HS, et al. A nomenclature consensus for 
nervous system organoids and assembloids. Nature. 2022; 
609(7929):907-910. doi:10.1038/s41586-022-05219-6.
132. Fan B, Wei Z, Feng S. Progression in translational research on spinal 
cord injury based on microenvironment imbalance. Bone Res. 2022; 
10(1):35. doi:10.1038/s41413-022-00199-9.
133. Awad BI, Carmody MA, Steinmetz MP. Potential role of growth 
factors in the management of spinal cord injury. World Neurosurg. 
2015; 83(1):120-31. doi:10.1016/j.wneu.2013.01.042.
134. Talifu Z, Qin C, Xin Z, et al. The Overexpression of Insulin-Like 
Growth Factor-1 and Neurotrophin-3 Promote Functional Recovery 
and Alleviate Spasticity after Spinal Cord Injury. Front Neurosci. 
2022; 16:863793. doi:10.3389/fnins.2022.863793.
135. Cooke P, Janowitz H, Dougherty SE. Neuronal Redevelopment and the 
Regeneration of Neuromodulatory Axons in the Adult Mammalian 
Central Nervous System. Front Cell Neurosci. 2022; 16:872501. 
doi:10.3389/fncel.2022.872501.
136. Gu Y, Wen G, Zhao H, Qi H, Yang Y, Hu T. Delivery of FGF10 by 
implantable porous gelatin microspheres for treatment of spinal cord 
injury. Mol Med Rep. 2023; 28(1) doi:10.3892/mmr.2023.13024.
137. Moshiri M, Hosseiniyan SM, Moallem SA, et al. The effects of vitamin 
B (12) on the brain damages caused by methamphetamine in mice. 
Iran J Basic Med Sci. 2018; 21(4):434-438. 
doi:10.22038/IJBMS.2018.23362.5897.
138. Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, CouillardDespres S, Aigner L. Granulocyte colony-stimulating factor in 
traumatic spinal cord injury. Drug Discov Today. 2021; 26(7):1642-
1655. doi:10.1016/j.drudis.2021.03.014.
139. Derakhshanrad N, Saberi H, Yekaninejad MS, Joghataei MT, 
Sheikhrezaei A. Granulocyte-colony stimulating factor administration 
for neurological improvement in patients with postrehabilitation 
chronic incomplete traumatic spinal cord injuries: a double-blind 
randomized controlled clinical trial. J Neurosurg Spine. 2018; 
29(1):97-107. doi:10.3171/2017.11.SPINE17769.
140. Pelisch N, Rosas Almanza J, Stehlik KE, Aperi BV, Kroner A. CCL3 
contributes to secondary damage after spinal cord injury. J 
Neuroinflammation. 2020; 17(1):362. doi:10.1186/s12974-020-
02037-3.
141. Kim HN, McCrea MR, Li S. Advances in molecular therapies for 
targeting pathophysiology in spinal cord injury. Expert Opin Ther 
Targets. 2023; 27(3):171-187. 
doi:10.1080/14728222.2023.2194532.
142. Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for 
spinal cord injury. Biomed Pharmacother. 2022; 145:112430. 
doi:10.1016/j.biopha.2021.112430.
143. Wang W, He D, Chen J, et al. Circular RNA Plek promotes fibrogenic 
activation by regulating the miR-135b-5p/TGF-betaR1 axis after 
spinal cord injury. Aging (Albany NY). 2021; 13(9):13211-13224. 
doi:10.18632/aging.203002.
144. Hu M, Cao Z, Jiang D. The Effect of miRNA-Modified Exosomes in 
Animal Models of Spinal Cord Injury: A meta-Analysis. Front Bioeng 
Biotechnol. 2021; 9:819651. doi:10.3389/fbioe.2021.819651.
145. Shen Y, Cai J. The Importance of Using Exosome-Loaded miRNA for 
the Treatment of Spinal Cord Injury. Mol Neurobiol. 2023; 60(2):447-
459. doi:10.1007/s12035-022-03088-8.
146. Liu XY, Guo JW, Kou JQ, Sun YL, Zheng XJ. Repair mechanism of 
astrocytes and non-astrocytes in spinal cord injury. World J Clin 
Cases. 2020; 8(5):854-863. doi:10.12998/wjcc.v8.i5.854.
147. Tran AP, Warren PM, Silver J. New insights into glial scar formation 
after spinal cord injury. Cell Tissue Res. 2022; 387(3):319-336. 
doi:10.1007/s00441-021-03477-w.
148. Costachescu B, Niculescu AG, Dabija MG, Teleanu RI, Grumezescu AM, 
Eva L. Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci. 
2022; 23(9) doi: 10.3390/ijms23094552.
149. Bao T, Li N, Chen H, et al. Drug-Loaded Zwitterion-Based 
Nanomotors for the Treatment of Spinal Cord Injury. ACS Appl Mater 
Interfaces. 2023; 15(27):32762-32771. doi:10.1021/acsami.3c05866.
150. Behroozi Z, Rahimi B, Hamblin MR, Nasirinezhad F, Janzadeh A, 
Ramezani F. Injection of Cerium Oxide Nanoparticles to Treat Spinal 
Cord Injury in Rats. J Neuropathol Exp Neurol. 
2022;doi:10.1093/jnen/nlac026.
151. Murphy C, Thomas FP. Generative AI in spinal cord injury research 
and care: Opportunities and challenges ahead. J Spinal Cord Med. 
2023; 46(3):341-342. doi:10.1080/10790268.2023.2198926.
152. Khan O, Badhiwala JH, Grasso G, Fehlings MG. Use of Machine 
Learning and Artificial Intelligence to Drive Personalized Medicine 
Approaches for Spine Care. World Neurosurg. 2020; 140:512-518.
doi:10.1016/j.wneu.2020.04.022.
153. Marrotte EJ, Johnson K, Schweller RM, et al. Induction of 
Neurogenesis and Angiogenesis in a Rat Hemisection Spinal Cord 
Injury Model With Combined Neural Stem Cell, Endothelial 
Progenitor Cell, and Biomimetic Hydrogel Matrix Therapy. Crit Care 
Explor. 2021; 3(6):e0436. doi:10.1097/CCE.0000000000000436.
154. Ebrahimian M, Hashemi M, Etemad L, Salmasi Z. Thymoquinoneloaded mesenchymal stem cell-derived exosome as an efficient nanosystem against breast cancer cells. Iran J Basic Med Sci. 2022; 
25(6):723-731. doi:10.22038/IJBMS.2022.64092.14116.
155. Fan L, Liu C, Chen X, et al. Exosomes-Loaded Electroconductive 
Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord 
Injury via Immunoregulation and Enhancement of Myelinated Axon 
Growth. Adv Sci (Weinh). 2022; 9(13):e2105586. 
doi:10.1002/advs.202105586.
156. Senger JB, Chan AWM, Chan KM, et al. Conditioning Electrical Stimulation Is Superior to Postoperative Electrical Stimulation in 
Enhanced Regeneration and Functional Recovery Following Nerve 
Graft Repair. Neurorehabil Neural Repair. 2020; 34(4):299-308. 
doi:10.1177/1545968320905801.
157. Fadeev FO, Bashirov FV, Markosyan VA, et al. Combination of 
epidural electrical stimulation with ex vivo triple gene therapy for 
spinal cord injury: a proof of principle study. Neural Regen Res. 2021; 
16(3):550-560. doi:10.4103/1673-5374.293150.
158. Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment 
for spinal cord injury: a sword of neuroregeneration upon 
neuromodulation. Neural Regen Res. 2020; 15(8):1437-1450. 
doi:10.4103/1673-5374.274332.
159. Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: 
combinatory approaches to address a multifaceted problem. EMBO 
Mol Med. 2020; 12(3):e11505. doi:10.15252/emmm.201911505.
160. Khaing ZZ, Chen JY, Safarians G, et al. Clinical Trials Targeting 
Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci. 
2023; 24(4) doi: 10.3390/ijms24043824.