1. Sharifmoradi K, Naderi A, Saljoghiyan P. The Effect of Boston
Brace on Lower Limb and L5-S1 Joint Contact Forces during
Walking in Patients with Idiopathic Scoliosis. Scientific
journal of Ilam University of medical sciences. 2017;
25(3):90-99.
2. Luković V, Ćuković S, Milošević D, Devedžić G. An ontologybased module of the information system ScolioMedIS for 3D
digital diagnosis of adolescent scoliosis. Comput Methods
Programs Biomed. 2019:178:247-263. doi:
10.1016/j.cmpb.2019.06.027.
3. Arima H, Hasegawa T, Yamato Y, et al. Clinical Outcomes and
Complications of Corrective Fusion Surgery Down to L4, L5,
and the Pelvis for Adult Scoliosis in Patients Younger than 50
Years. Spine Surg Relat Res. 2022; 6(5):518-525. doi:
10.22603/ssrr.2021-0220.
4. Salmingo RA, Tadano S, Fujisaki K, Abe Y, Ito M. Relationship
of forces acting on implant rods and degree of scoliosis
correction. Clin Biomech (Bristol, Avon).2013; 28(2):122-8.
doi: 10.1016/j.clinbiomech.2012.12.001.
5. Yang JH, Suh SW, Chang D-G. Comparison of surgical
correction rates between titanium and cobalt-chrome-alloy
as rod materials in adolescent idiopathic scoliosis. Sci Rep.
2020; 10(1):10053. doi: 10.1038/s41598-020-66975-x.
6. Wang W, Baran GR, Betz RR, Samdani AF, Pahys JM, Cahill PJ.
The use of finite element models to assist understanding and
treatment for scoliosis: a review paper. Spine Deform.2014;
2(1):10-27. doi: 10.1016/j.jspd.2013.09.007.
7. Salmingo RA, Tadano S, Abe Y, Ito M. Influence of implant rod
curvature on sagittal correction of scoliosis deformity. Spine J.
2014; 14(8):1432-9. doi: 10.1016/j.spinee.2013.08.042.
8. Le Navéaux F, Aubin C-E, Parent S, O Newton P, Labelle H. 3D
rod shape changes in adolescent idiopathic scoliosis
instrumentation: how much does it impact correction? Eur
Spine J. 2017; 26(6):1676-1683. doi: 10.1007/s00586-017-
4958-1.
9. Courvoisier A, Cebrian A, Simon J, et al. Virtual Scoliosis
Surgery Using a 3D-Printed Model Based on Biplanar
Radiographs. Bioengineering (Basel).2022; 9(9):469. doi:
10.3390/bioengineering9090469.
10. Shah K, Gadiya A, Shah M, et al. Does Three-dimensional
printed patient-specific templates add benefit in revision
surgeries for complex pediatric kyphoscoliosis deformity
with sublaminar wires in situ? A clinical study. Asian Spine
J.2021; 15(1):46-53. doi: 10.31616/asj.2019.0021.
11. Ghandhari H, Mahabadi MA, Nikouei F, et al. The role of
spinopelvic parameters in clinical outcomes of spinal
osteotomies in patients with sagittal imbalance. Arch Bone Jt
Surg. 2018; 6(4):324-330.
12. Solla F, Ilharreborde B, Blondel B, et al. Can Lumbopelvic
Parameters Be Used to Predict Thoracic Kyphosis at all Ages?
A National Cross-Sectional Study. Global Spine J. 2024;
14(4):1116-1124. doi: 10.1177/21925682221134039.
13. Hu B, Wang L, Song Y, Yang X, Liu L, Zhou C. Postoperative
proximal junctional kyphosis correlated with thoracic inlet
angle in Lenke 5c adolescent idiopathic scoliosis patients
following posterior surgery. BMC Musculoskelet Disord.2022;
23(1):919. doi: 10.1186/s12891-022-05868-8.
14. Junaid J. Prediction of Scoliosis Curve Correction Using Apical
Fulcrum Bending Radiographs in Adolescent Idiopathic
Scoliosis (AIS). Pakistan Journal of Medicine and Dentistry.
2021; 10(3):47-53.
15. Tokala DP, Nelson IW, Mehta JS, Powell R, Grannum S,
Hutchinson MJ. Prediction of scoliosis curve correction using
pedicle screw constructs in AIS: A comparison of fulcrum
bend radiographs and traction radiographs under general
anesthesia. Global Spine J.2018 (7):676-682. doi:
10.1177/2192568218763147.
16. Sudo H, Tachi H, Kokabu T, et al. In vivo deformation of
anatomically pre-bent rods in thoracic adolescent idiopathic
scoliosis. Sci Rep. 2021; 11(1):12622. doi: 10.1038/s41598-
021-92187-y.
17. Kokabu T, Kanai S, Kawakami N, et al. An algorithm for using
deep learning convolutional neural networks with three
dimensional depth sensor imaging in scoliosis detection.
Spine J. 2021; 21(6):980-987. doi:
10.1016/j.spinee.2021.01.022.
18. Vergari C, Skalli W, Gajny L. A convolutional neural network
to detect scoliosis treatment in radiographs. Int J Comput
Assist Radiol Surg. 2020; 15(6):1069-1074. doi:
10.1007/s11548-020-02173-4. 19. Phan P, Mezghani N, Wai EK, de Guise J, Labelle H. Artificial
neural networks assessing adolescent idiopathic scoliosis:
comparison with Lenke classification. Spine J. 2013;
13(11):1527-33. doi: 10.1016/j.spinee.2013.07.449.
20. Mezghani N, Phan P, Mitiche A, Labelle H, De Guise JA. A
Kohonen neural network description of scoliosis fused
regions and their corresponding Lenke classification. Int J
Comput Assist Radiol Surg. 2012;7(2):257-64. doi:
10.1007/s11548-011-0667-0.
21. Rak M, Steffen J, Meyer A, Hansen C, Tönnies KD. Combining
convolutional neural networks and star convex cuts for fast
whole spine vertebra segmentation in MRI. Comput Methods
Programs Biomed. 2019:177:47-56. doi:
10.1016/j.cmpb.2019.05.003.
22. Nozawa K, Maki S, Furuya T, et al. Magnetic resonance image
segmentation of the compressed spinal cord in patients with
degenerative cervical myelopathy using convolutional neural
networks. Int J Comput Assist Radiol Surg. 2023; 18(1):45-54.
doi: 10.1007/s11548-022-02783-0.
23. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and
machine learning in spine research. JOR Spine. 2019;
2(1):e1044. doi: 10.1002/jsp2.1044.
24. Yang D, Lee T, Lai K, et al. Semi-automatic method for presurgery scoliosis classification on X-ray images using Bending
Asymmetry Index. Int J Comput Assist Radiol Surg. 2022;
17(12):2239-2251. doi: 10.1007/s11548-022-02740-x.
25. Peng L, Lan L, Xiu P, et al. Prediction of proximal junctional
kyphosis after posterior scoliosis surgery with machine
learning in the Lenke 5 adolescent idiopathic scoliosis
patient. Front Bioeng Biotechnol. 2020:8:559387. doi:
10.3389/fbioe.2020.559387.
26. Abedi R, Fatouraee N, Bostanshirin M, Arjmand N, Ghandhari
H. Prediction of Post-operative Clinical Indices in Scoliosis
Correction Surgery Using an Adaptive Neuro-fuzzy Interface
System. Arch Bone Jt Surg. 2023; 11(4):241-247. doi:
10.22038/ABJS.2022.66559.3176.
27. Garg B, Mehta N, Bansal T, Malhotra R. EOS® imaging:
Concept and current applications in spinal disorders. J Clin
Orthop Trauma. 2020; 11(5):786-793. doi:
10.1016/j.jcot.2020.06.012.
28. Melhem E, Assi A, El Rachkidi R, Ghanem I. EOS® biplanar Xray imaging: concept, developments, benefits, and limitations.
J Child Orthop. 2016; 10(1):1-14. doi: 10.1007/s11832-016-
0713-0.
29. Schmid S, Burkhart KA, Allaire BT, Grindle D, Anderson DE.
Musculoskeletal full-body models including a detailed
thoracolumbar spine for children and adolescents aged 6–
18 years. J Biomech. 2020:102:109305. doi:
10.1016/j.jbiomech.2019.07.049.
30. Schmid S, Connolly L, Moschini G, Meier ML, Senteler M. Skin
marker-based subject-specific spinal alignment modeling: A
feasibility study. J Biomech. 2022:137:111102. doi:
10.1016/j.jbiomech.2022.111102.
31. Salmingo R, Tadano S, Fujisaki K, Abe Y, Ito M. Corrective
force analysis for scoliosis from implant rod deformation. Clin
Biomech (Bristol, Avon). 2012; 27(6):545-50. doi:
10.1016/j.clinbiomech.2012.01.004.
32. Wang X, Boyer L, Le Naveaux F, Schwend RM, Aubin C-E. How
does differential rod contouring contribute to 3-dimensional
correction and affect the bone-screw forces in adolescent
idiopathic scoliosis instrumentation? Clin Biomech (Bristol,
Avon).2016:39:115-121. doi:
10.1016/j.clinbiomech.2016.10.002.
33. Kamal Z, Rouhi G, Arjmand N, Adeeb S. A stability-based
model of a growing spine with adolescent idiopathic scoliosis:
A combination of musculoskeletal and finite element
approaches. Med Eng Phys. 2019:64:46-55. doi:
10.1016/j.medengphy.2018.12.015.
34. Skov ST, Li H, Hansen ES, et al. New growth rod concept
provides three dimensional correction, spinal growth, and
preserved pulmonary function in early-onset scoliosis. Int
Orthop. 2020; 44(9):1773-1783. doi: 10.1007/s00264-020-
04604-y.
35. Lechner R, Putzer D, Dammerer D, Liebensteiner M, Bach C,
Thaler M. Comparison of two-and three-dimensional
measurement of the Cobb angle in scoliosis. Int Orthop. 2017;
41(5):957-962. doi: 10.1007/s00264-016-3359-0.