The use of Three-Dimensional Printing in Orthopaedics: a Systematic Review and Meta-analysis

Document Type : SYSTEMATIC REVIEW

Authors

1 Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom- School of Clinical Medicine, University Of Cambridge, Cambridge, United Kingdom

2 Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom

3 Department of Medicine, Royal Free London NHS Foundation Trust, London, United Kingdom

4 Kellogg College, University of Oxford, Oxford, United Kingdom - Medical Sciences Division, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom

Abstract

Objectives: 3D-printing is a rapidly developing technology with applications in orthopaedics including 
pre-operative planning, intraoperative guides, design of patient specific instruments and prosthetics, 
and education. Existing literature demonstrates that in the surgical trea tment of a wide range of 
orthopaedic pathology, using 3D printing shows favourable outcomes. Despite this evidence 3D printing 
is not routinely used in orthopaedic practice. We aim to evaluate the advantages of 3D printing in 
orthopaedic surgery to demonstrate its widespread applications throughout the field.
Methods: We performed a comprehensive systematic review and meta-analysis. AMED, EMBASE, EMCARE, 
HMIC, PsycINFO, PubMed, BNI, CINAHL and Medline databases were searched using Healthcare Databases 
Advanced Search (HDAS) platform. The search was conducted to include papers published before 8th November 
2020. Clinical trials, journal articles, Randomised Control Trials and Case Series were included across any area of 
orthopaedic surgery. The primary outcomes measured were operation time, blood loss, fluoroscopy time, bone 
fusion time and length of hospital stay.
Results: A total of 65 studies met the inclusion criteria and were reviewed, and 15 were suitable for the metaanalysis, producing a data set of 609 patients. The use of 3D printing in any of its recognised applications across 
orthopaedic surgery showed an overall reduction in operative time (SMD = -1.30; 95%CI: -1.73, -0.87), reduction in 
intraoperative blood loss (SMD = -1.58; 95%CI: -2.16, -1.00) and reduction in intraoperative fluoroscopy time (SMD 
= -1.86; 95%CI: -2.60, -1.12). There was no significant difference in length of hospital stay or in bone fusion time 
post-operatively.
Conclusion: The use of 3D printing in orthopaedics leads to an improvement in primary outcome measures showing 
reduced operative time, intraoperative blood loss and number of times fluoroscopy is used. With its wide-reaching 
applications and as the technology improves, 3D printing could become a valuable addition to an orthopaedic 
surgeon’s toolbox.
 Level of evidence: I

Keywords

Main Subjects


  1. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014; 86(7):3240-3253. doi:10.1021/ac403397r.
  2. Saggiomo V. A 3D Printer in the Lab: Not Only a Toy. Adv Sci (Weinh). 2022; 9(27):e2202610. doi:10.1002/advs.202202610.
  3. Wan L, Zhang X, Zhang S, et al. Clinical feasibility and application value of computer virtual reduction combined with 3D printing technique in complex acetabular fractures. Exp Ther Med. 2019:3630-3636. doi:10.3892/etm.2019.7344.
  4. Dekker TJ, Steele JR, Federer AE, Hamid KS, Adams SBJ. Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Foot Ankle Int. 2018; 39(8):916-921. doi:10.1177/1071100718770133.
  5. Ma L, Zhou Y, Zhu Y, et al. 3D-printed guiding templates for improved osteosarcoma resection. Sci Rep. 2016; 6:23335. doi:10.1038/srep23335.
  6. Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016; 8:57-66. doi:10.2147/ORR.S99614.
  7. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. J Am Acad Orthop Surg Glob Res Rev. 2021; 5(4):e20.00230–11. doi:10.5435/JAAOSGlobal-D-20-00230.
  8. Morgan C, Khatri C, Hanna SA, Ashrafian H, Sarraf KM. Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery: A systematic review and meta-analysis. World J Orthop. 2020; 11(1):57-67. doi:10.5312/wjo.v11.i1.57.
  9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021; 10(1):89. doi:10.1186/s13643-021-01626-4.
  10. Granholm A, Alhazzani W, Møller MH. Use of the GRADE approach in systematic reviews and guidelines. Br J Anaesth. 2019; 123(5):554-559. doi:10.1016/j.bja.2019.08.015.
  11. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366:l4898. doi:10.1136/bmj.l4898.
  12. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016; 355:i4919. doi:10.1136/bmj.i4919.
  13. Wang Z, Taylor K, Allman-Farinelli M, et al. A Systematic Review: Tools for Assessing Methodological Quality of Human Observational Studies. 2019. doi:10.31222/osf.io/pnqmy.
  14. Deeks JJ, Higgins JPT, Altman DG. Chapter 9: Analysing data and undertaking meta-analyses. In: Cochrane Handbook for Systematic Reviews of Interventions. ; 2011.
  15. Chen C, Cai L, Zheng W, Wang J, Guo X, Chen H. The efficacy of using 3D printing models in the treatment of fractures: a randomised clinical trial. BMC Musculoskelet Disord. 2019; 20(1):65. doi:10.1186/s12891-019-2448-9.
  16. Huang JH, Liao H, Tan XY, et al. Surgical treatment for both-column acetabular fractures using pre-operative virtual simulation and three-dimensional printing techniques. Chin Med J (Engl). 2020; 133(4):395-401. doi:10.1097/CM9.0000000000000649.
  17. Kong L, Yang G, Yu J, et al. Surgical treatment of intra-articular distal radius fractures with the assistance of three-dimensional printing technique. Medicine. 2020; 99(8):e19259. doi:10.1097/MD.0000000000019259.
  18. Liu K, Li Z, Ma Y, Lian H. 3D-printed pelvis model is an efficient method of osteotomy simulation for the treatment of developmental dysplasia of the hip. Exp Ther Med. 2020;19(2):1155-1160. doi:10.3892/etm.2019.8332.
  19. Ozturk AM, Suer O, Derin O, Ozer MA, Govsa F, Aktuglu K. Surgical advantages of using 3D patient-specific models in high-energy tibial plateau fractures. Eur J Trauma Emerg Surg. 2020; 46(5):1183-1194. doi:10.1007/s00068-020-01378-1.
  20. Wang Xiji Yang Ruize Hao Dingjun SHZY. Accuracy and clinical efficacy of three-dimensional printing and navigation technology assisted lumbar cortical bone trajectory screw placement. Chinese Journal of Tissue Engineering Research. 23(12):1864-1869.
  21. Wan L, Zhang X, Zhang S, et al. Clinical feasibility and application value of computer virtual reduction combined with 3D printing technique in complex acetabular fractures. Exp Ther Med. 2019; 17(5):3630-3636. doi:10.3892/etm.2019.7344.
  22. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop. 2017; 41(11):2381-2387. doi:10.1007/s00264-017-3627-7.
  23. Yin HW, Feng JT, Yu BF, Shen YD, dong Gu Y, dong Xu W. 3D printing-assisted percutaneous fixation makes the surgery for scaphoid nonunion more accurate and less invasive. J Orthop Translat. 2020; 24(December 2019):138-143. doi:10.1016/j.jot.2020.01.007.
  24. Giannetti S, Bizzotto N, Stancati A, Santucci A. Minimally invasive fixation in tibial plateau fractures using an pre-operative and intra-operative real size 3D printing. Injury. 2017; 48(3):784-788. doi:https://doi.org/10.1016/j.injury.2016.11.015.
  25. Wang Q, Hu J, Guan J, Chen Y, Wang L. Proximal third humeral shaft fractures fixed with long helical PHILOS plates in elderly patients: Benefit of pre-contouring plates on a 3D-printed model-a retrospective study. J Orthop Surg Res. 2018; 13(1):1-7. doi:10.1186/s13018-018-0908-9.
  26. jun Duan X, quan Fan H, you Wang F, He P, Yang L. Application of 3D-printed Customized Guides in Subtalar Joint Arthrodesis. Orthop Surg. 2019; 11(3):405-413. doi:10.1111/os.12464.
  27. Cai X, Xu Y, Yu K, et al. Clinical Application of 3-Dimensional Printed Navigation Templates in Treating Femoral Head Osteonecrosis With Pedicled Iliac Bone Graft. Ann Plast Surg. 2020; 84(5S Suppl 3):S230–S234. doi:10.1097/SAP.0000000000002362.
  28. Wang X, Liu S, Peng J, et al. Development of a novel customized cutting and rotating template for Bernese periacetabular osteotomy. J Orthop Surg Res. 2019; 14(1):1-10. doi:10.1186/s13018-019-1267-x.
  29. Tian H, Zhao MW, Geng X, Zhou QY, Li Y. Patient-Specific Instruments Based on Knee Joint Computed Tomography and Full-Length Lower Extremity Radiography in Total Knee Replacement. Chin Med J (Engl). 2018; 131(5):583-587. doi:10.4103/0366-6999.226062.
  30. Dai G, Shao Z, Weng Q, Zheng Y, Hong J, Lu X. Percutaneous reduction, cannulated screw fixation and calcium sulfate cement grafting assisted by 3D printing technology in the treatment of calcaneal fractures. J Orthop Sci. 2021; 26(4):636-643. doi: 10.1016/j.jos.2020.06.008.
  31. Cheng H, Clymer JW, Po-Han Chen B, et al. Prolonged operative duration is associated with complications: a systematic review and meta-analysis. J Surg Res. 2018; 229:134-144. doi:https://doi.org/10.1016/j.jss.2018.03.022.

 

  1. Duchman KR, Pugely AJ, Martin CT, Gao Y, Bedard NA, Callaghan JJ. Operative time affects short-term complications in total joint arthroplasty. J Arthroplasty. 2017; 32(4):1285-1291. doi: 10.1016/j.arth.2016.12.003.
  2. Peersman G, Laskin R, Davis J, Peterson MGE, Richart T. Prolonged operative time correlates with increased infection rate after total knee arthroplasty. HSS J. 2006; 2(1):70-72. doi: 10.1007/s11420-005-0130-2.
  3. Cregar WM, Goodloe JB, Lu Y, Gerlinger TL. Increased Operative Time Impacts Rates of Short-Term Complications After Unicompartmental Knee Arthroplasty. J Arthroplasty. 2021; 36(2):488-494. doi:10.1016/j.arth.2020.08.032.
  4. Ang WW, Sabharwal S, Johannsson H, Bhattacharya R, Gupte CM. The cost of trauma operating theatre inefficiency. Ann Med Surg (Lond). 2016; 7:24-29. doi:10.1016/j.amsu.2016.03.001.
  5. Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER. Dosimetric characterization of a cone-beam O-arm imaging system. J Xray Sci Technol. 2009; 17(4):305-317. doi:10.3233/XST-2009-0231.
  6. Lee AKX, Lin TL, Hsu CJ, Fong YC, Chen HT, Tsai CH. Three-Dimensional Printing and Fracture Mapping in Pelvic and Acetabular Fractures: A Systematic Review and Meta-Analysis. J Clin Med. 2022; 11(18). doi:10.3390/jcm11185258.
  7. Papotto G, Testa G, Mobilia G, et al. Use of 3D printing and pre-contouring plate in the surgical planning of acetabular fractures: A systematic review. Orthop Traumatol Surg Res. 2022; 108(2):103111. doi:10.1016/j.otsr.2021.103111.
  8. Li K, Liu Z, Li X, Wang J. 3D printing-assisted surgery for proximal humerus fractures: a systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2022; 48(5):3493-3503. doi:10.1007/s00068-021-01851-5.
  9. Shi G, Liu W, Shen Y, Cai X. 3D printing-assisted extended lateral approach for displaced intra-articular calcaneal fractures: a systematic review and meta-analysis. J Orthop Surg Res. 2021; 16(1):682. doi:10.1186/s13018-021-02832-5.