1. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM.
Evaluation of 3D printing and its potential impact on
biotechnology and the chemical sciences. Anal Chem. 2014;
86(7):3240-3253. doi:10.1021/ac403397r.
2. Saggiomo V. A 3D Printer in the Lab: Not Only a Toy. Adv Sci
(Weinh). 2022; 9(27):e2202610.
doi:10.1002/advs.202202610.
3. Wan L, Zhang X, Zhang S, et al. Clinical feasibility and application value of computer virtual reduction combined with
3D printing technique in complex acetabular fractures. Exp
Ther Med. 2019:3630-3636. doi:10.3892/etm.2019.7344.
4. Dekker TJ, Steele JR, Federer AE, Hamid KS, Adams SBJ. Use of
Patient-Specific 3D-Printed Titanium Implants for Complex
Foot and Ankle Limb Salvage, Deformity Correction, and
Arthrodesis Procedures. Foot Ankle Int. 2018; 39(8):916-921.
doi:10.1177/1071100718770133.
5. Ma L, Zhou Y, Zhu Y, et al. 3D-printed guiding templates for
improved osteosarcoma resection. Sci Rep. 2016; 6:23335.
doi:10.1038/srep23335.
6. Wong KC. 3D-printed patient-specific applications in
orthopedics. Orthop Res Rev. 2016; 8:57-66.
doi:10.2147/ORR.S99614.
7. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Threedimensional Printing in Orthopaedic Surgery: Current
Applications and Future Developments. J Am Acad Orthop Surg
Glob Res Rev. 2021; 5(4):e20.00230–11.
doi:10.5435/JAAOSGlobal-D-20-00230.
8. Morgan C, Khatri C, Hanna SA, Ashrafian H, Sarraf KM. Use of
three-dimensional printing in preoperative planning in
orthopaedic trauma surgery: A systematic review and metaanalysis. World J Orthop. 2020; 11(1):57-67.
doi:10.5312/wjo.v11.i1.57.
9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020
statement: an updated guideline for reporting systematic
reviews. Syst Rev. 2021; 10(1):89. doi:10.1186/s13643-021-
01626-4.
10. Granholm A, Alhazzani W, Møller MH. Use of the GRADE
approach in systematic reviews and guidelines. Br J Anaesth.
2019; 123(5):554-559. doi:10.1016/j.bja.2019.08.015.
11. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for
assessing risk of bias in randomised trials. BMJ. 2019;
366:l4898. doi:10.1136/bmj.l4898.
12. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for
assessing risk of bias in non-randomised studies of
interventions. BMJ. 2016; 355:i4919. doi:10.1136/bmj.i4919.
13. Wang Z, Taylor K, Allman-Farinelli M, et al. A Systematic
Review: Tools for Assessing Methodological Quality of Human
Observational Studies. 2019. doi:10.31222/osf.io/pnqmy.
14. Deeks JJ, Higgins JPT, Altman DG. Chapter 9: Analysing data and
undertaking meta-analyses. In: Cochrane Handbook for
Systematic Reviews of Interventions. ; 2011.
15. Chen C, Cai L, Zheng W, Wang J, Guo X, Chen H. The efficacy of
using 3D printing models in the treatment of fractures: a
randomised clinical trial. BMC Musculoskelet Disord. 2019;
20(1):65. doi:10.1186/s12891-019-2448-9.
16. Huang JH, Liao H, Tan XY, et al. Surgical treatment for bothcolumn acetabular fractures using pre-operative virtual
simulation and three-dimensional printing techniques. Chin
Med J (Engl). 2020; 133(4):395-401.
doi:10.1097/CM9.0000000000000649.
17. Kong L, Yang G, Yu J, et al. Surgical treatment of intra-articular
distal radius fractures with the assistance of three-dimensional
printing technique. Medicine. 2020; 99(8):e19259.
doi:10.1097/MD.0000000000019259.
18. Liu K, Li Z, Ma Y, Lian H. 3D-printed pelvis model is an efficient
method of osteotomy simulation for the treatment of
developmental dysplasia of the hip. Exp Ther Med.
2020;19(2):1155-1160. doi:10.3892/etm.2019.8332.
19. Ozturk AM, Suer O, Derin O, Ozer MA, Govsa F, Aktuglu K.
Surgical advantages of using 3D patient-specific models in
high-energy tibial plateau fractures. Eur J Trauma Emerg Surg.
2020; 46(5):1183-1194. doi:10.1007/s00068-020-01378-1.
20. Wang Xiji Yang Ruize Hao Dingjun SHZY. Accuracy and clinical
efficacy of three-dimensional printing and navigation
technology assisted lumbar cortical bone trajectory screw
placement. Chinese Journal of Tissue Engineering Research.
23(12):1864-1869.
21. Wan L, Zhang X, Zhang S, et al. Clinical feasibility and
application value of computer virtual reduction combined with
3D printing technique in complex acetabular fractures. Exp
Ther Med. 2019; 17(5):3630-3636.
doi:10.3892/etm.2019.7344.
22. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing
technology and materials for treatment of elbow fractures. Int
Orthop. 2017; 41(11):2381-2387. doi:10.1007/s00264-017-
3627-7.
23. Yin HW, Feng JT, Yu BF, Shen YD, dong Gu Y, dong Xu W. 3D
printing-assisted percutaneous fixation makes the surgery for
scaphoid nonunion more accurate and less invasive. J Orthop
Translat. 2020; 24(December 2019):138-143.
doi:10.1016/j.jot.2020.01.007.
24. Giannetti S, Bizzotto N, Stancati A, Santucci A. Minimally
invasive fixation in tibial plateau fractures using an preoperative and intra-operative real size 3D printing. Injury.
2017; 48(3):784-788.
doi:https://doi.org/10.1016/j.injury.2016.11.015.
25. Wang Q, Hu J, Guan J, Chen Y, Wang L. Proximal third humeral
shaft fractures fixed with long helical PHILOS plates in elderly
patients: Benefit of pre-contouring plates on a 3D-printed
model-a retrospective study. J Orthop Surg Res. 2018; 13(1):1-
7. doi:10.1186/s13018-018-0908-9.
26. jun Duan X, quan Fan H, you Wang F, He P, Yang L. Application
of 3D-printed Customized Guides in Subtalar Joint Arthrodesis.
Orthop Surg. 2019; 11(3):405-413. doi:10.1111/os.12464.
27. Cai X, Xu Y, Yu K, et al. Clinical Application of 3-Dimensional
Printed Navigation Templates in Treating Femoral Head
Osteonecrosis With Pedicled Iliac Bone Graft. Ann Plast Surg.
2020; 84(5S Suppl 3):S230–S234.
doi:10.1097/SAP.0000000000002362.
28. Wang X, Liu S, Peng J, et al. Development of a novel customized
cutting and rotating template for Bernese periacetabular
osteotomy. J Orthop Surg Res. 2019; 14(1):1-10.
doi:10.1186/s13018-019-1267-x.
29. Tian H, Zhao MW, Geng X, Zhou QY, Li Y. Patient-Specific
Instruments Based on Knee Joint Computed Tomography and
Full-Length Lower Extremity Radiography in Total Knee
Replacement. Chin Med J (Engl). 2018; 131(5):583-587.
doi:10.4103/0366-6999.226062.
30. Dai G, Shao Z, Weng Q, Zheng Y, Hong J, Lu X. Percutaneous
reduction, cannulated screw fixation and calcium sulfate
cement grafting assisted by 3D printing technology in the
treatment of calcaneal fractures. J Orthop Sci. 2021; 26(4):636-
643. doi: 10.1016/j.jos.2020.06.008.
31. Cheng H, Clymer JW, Po-Han Chen B, et al. Prolonged operative
duration is associated with complications: a systematic review
and meta-analysis. J Surg Res. 2018; 229:134-144. doi:https://doi.org/10.1016/j.jss.2018.03.022.
32. Duchman KR, Pugely AJ, Martin CT, Gao Y, Bedard NA,
Callaghan JJ. Operative time affects short-term complications in
total joint arthroplasty. J Arthroplasty. 2017; 32(4):1285-1291.
doi: 10.1016/j.arth.2016.12.003.
33. Peersman G, Laskin R, Davis J, Peterson MGE, Richart T.
Prolonged operative time correlates with increased infection
rate after total knee arthroplasty. HSS J. 2006; 2(1):70-72. doi:
10.1007/s11420-005-0130-2.
34. Cregar WM, Goodloe JB, Lu Y, Gerlinger TL. Increased Operative
Time Impacts Rates of Short-Term Complications After
Unicompartmental Knee Arthroplasty. J Arthroplasty. 2021;
36(2):488-494. doi:10.1016/j.arth.2020.08.032.
35. Ang WW, Sabharwal S, Johannsson H, Bhattacharya R, Gupte
CM. The cost of trauma operating theatre inefficiency. Ann Med
Surg (Lond). 2016; 7:24-29. doi:10.1016/j.amsu.2016.03.001.
36. Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER.
Dosimetric characterization of a cone-beam O-arm imaging
system. J Xray Sci Technol. 2009; 17(4):305-317.
doi:10.3233/XST-2009-0231.
37. Lee AKX, Lin TL, Hsu CJ, Fong YC, Chen HT, Tsai CH. ThreeDimensional Printing and Fracture Mapping in Pelvic and
Acetabular Fractures: A Systematic Review and Meta-Analysis.
J Clin Med. 2022; 11(18). doi:10.3390/jcm11185258.
38. Papotto G, Testa G, Mobilia G, et al. Use of 3D printing and precontouring plate in the surgical planning of acetabular
fractures: A systematic review. Orthop Traumatol Surg Res.
2022; 108(2):103111. doi:10.1016/j.otsr.2021.103111.
39. Li K, Liu Z, Li X, Wang J. 3D printing-assisted surgery for
proximal humerus fractures: a systematic review and metaanalysis. Eur J Trauma Emerg Surg. 2022; 48(5):3493-3503.
doi:10.1007/s00068-021-01851-5.
40. Shi G, Liu W, Shen Y, Cai X. 3D printing-assisted extended
lateral approach for displaced intra-articular calcaneal
fractures: a systematic review and meta-analysis. J Orthop Surg
Res. 2021; 16(1):682. doi:10.1186/s13018-021-02832-5.