The use of Three-Dimensional Printing in Orthopaedics: a Systematic Review and Meta-analysis

Document Type : SYSTEMATIC REVIEW

Authors

1 Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom- School of Clinical Medicine, University Of Cambridge, Cambridge, United Kingdom

2 Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom

3 Department of Medicine, Royal Free London NHS Foundation Trust, London, United Kingdom

4 Kellogg College, University of Oxford, Oxford, United Kingdom - Medical Sciences Division, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom

Abstract

Objectives: 3D-printing is a rapidly developing technology with applications in orthopaedics including 
pre-operative planning, intraoperative guides, design of patient specific instruments and prosthetics, 
and education. Existing literature demonstrates that in the surgical trea tment of a wide range of 
orthopaedic pathology, using 3D printing shows favourable outcomes. Despite this evidence 3D printing 
is not routinely used in orthopaedic practice. We aim to evaluate the advantages of 3D printing in 
orthopaedic surgery to demonstrate its widespread applications throughout the field.
Methods: We performed a comprehensive systematic review and meta-analysis. AMED, EMBASE, EMCARE, 
HMIC, PsycINFO, PubMed, BNI, CINAHL and Medline databases were searched using Healthcare Databases 
Advanced Search (HDAS) platform. The search was conducted to include papers published before 8th November 
2020. Clinical trials, journal articles, Randomised Control Trials and Case Series were included across any area of 
orthopaedic surgery. The primary outcomes measured were operation time, blood loss, fluoroscopy time, bone 
fusion time and length of hospital stay.
Results: A total of 65 studies met the inclusion criteria and were reviewed, and 15 were suitable for the metaanalysis, producing a data set of 609 patients. The use of 3D printing in any of its recognised applications across 
orthopaedic surgery showed an overall reduction in operative time (SMD = -1.30; 95%CI: -1.73, -0.87), reduction in 
intraoperative blood loss (SMD = -1.58; 95%CI: -2.16, -1.00) and reduction in intraoperative fluoroscopy time (SMD 
= -1.86; 95%CI: -2.60, -1.12). There was no significant difference in length of hospital stay or in bone fusion time 
post-operatively.
Conclusion: The use of 3D printing in orthopaedics leads to an improvement in primary outcome measures showing 
reduced operative time, intraoperative blood loss and number of times fluoroscopy is used. With its wide-reaching 
applications and as the technology improves, 3D printing could become a valuable addition to an orthopaedic 
surgeon’s toolbox.
 Level of evidence: I

Keywords

Main Subjects


1. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. 
Evaluation of 3D printing and its potential impact on 
biotechnology and the chemical sciences. Anal Chem. 2014; 
86(7):3240-3253. doi:10.1021/ac403397r.
2. Saggiomo V. A 3D Printer in the Lab: Not Only a Toy. Adv Sci 
(Weinh). 2022; 9(27):e2202610. 
doi:10.1002/advs.202202610.
3. Wan L, Zhang X, Zhang S, et al. Clinical feasibility and  application value of computer virtual reduction combined with 
3D printing technique in complex acetabular fractures. Exp 
Ther Med. 2019:3630-3636. doi:10.3892/etm.2019.7344.
4. Dekker TJ, Steele JR, Federer AE, Hamid KS, Adams SBJ. Use of 
Patient-Specific 3D-Printed Titanium Implants for Complex 
Foot and Ankle Limb Salvage, Deformity Correction, and 
Arthrodesis Procedures. Foot Ankle Int. 2018; 39(8):916-921. 
doi:10.1177/1071100718770133.
5. Ma L, Zhou Y, Zhu Y, et al. 3D-printed guiding templates for 
improved osteosarcoma resection. Sci Rep. 2016; 6:23335. 
doi:10.1038/srep23335.
6. Wong KC. 3D-printed patient-specific applications in 
orthopedics. Orthop Res Rev. 2016; 8:57-66. 
doi:10.2147/ORR.S99614.
7. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Threedimensional Printing in Orthopaedic Surgery: Current 
Applications and Future Developments. J Am Acad Orthop Surg 
Glob Res Rev. 2021; 5(4):e20.00230–11. 
doi:10.5435/JAAOSGlobal-D-20-00230.
8. Morgan C, Khatri C, Hanna SA, Ashrafian H, Sarraf KM. Use of 
three-dimensional printing in preoperative planning in 
orthopaedic trauma surgery: A systematic review and metaanalysis. World J Orthop. 2020; 11(1):57-67. 
doi:10.5312/wjo.v11.i1.57.
9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 
statement: an updated guideline for reporting systematic 
reviews. Syst Rev. 2021; 10(1):89. doi:10.1186/s13643-021-
01626-4.
10. Granholm A, Alhazzani W, Møller MH. Use of the GRADE 
approach in systematic reviews and guidelines. Br J Anaesth. 
2019; 123(5):554-559. doi:10.1016/j.bja.2019.08.015.
11. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for 
assessing risk of bias in randomised trials. BMJ. 2019; 
366:l4898. doi:10.1136/bmj.l4898.
12. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for 
assessing risk of bias in non-randomised studies of 
interventions. BMJ. 2016; 355:i4919. doi:10.1136/bmj.i4919.
13. Wang Z, Taylor K, Allman-Farinelli M, et al. A Systematic 
Review: Tools for Assessing Methodological Quality of Human 
Observational Studies. 2019. doi:10.31222/osf.io/pnqmy.
14. Deeks JJ, Higgins JPT, Altman DG. Chapter 9: Analysing data and 
undertaking meta-analyses. In: Cochrane Handbook for 
Systematic Reviews of Interventions. ; 2011.
15. Chen C, Cai L, Zheng W, Wang J, Guo X, Chen H. The efficacy of 
using 3D printing models in the treatment of fractures: a 
randomised clinical trial. BMC Musculoskelet Disord. 2019; 
20(1):65. doi:10.1186/s12891-019-2448-9.
16. Huang JH, Liao H, Tan XY, et al. Surgical treatment for bothcolumn acetabular fractures using pre-operative virtual 
simulation and three-dimensional printing techniques. Chin 
Med J (Engl). 2020; 133(4):395-401. 
doi:10.1097/CM9.0000000000000649.
17. Kong L, Yang G, Yu J, et al. Surgical treatment of intra-articular 
distal radius fractures with the assistance of three-dimensional 
printing technique. Medicine. 2020; 99(8):e19259. 
doi:10.1097/MD.0000000000019259.
18. Liu K, Li Z, Ma Y, Lian H. 3D-printed pelvis model is an efficient 
method of osteotomy simulation for the treatment of 
developmental dysplasia of the hip. Exp Ther Med. 
2020;19(2):1155-1160. doi:10.3892/etm.2019.8332.
19. Ozturk AM, Suer O, Derin O, Ozer MA, Govsa F, Aktuglu K. 
Surgical advantages of using 3D patient-specific models in 
high-energy tibial plateau fractures. Eur J Trauma Emerg Surg. 
2020; 46(5):1183-1194. doi:10.1007/s00068-020-01378-1.
20. Wang Xiji Yang Ruize Hao Dingjun SHZY. Accuracy and clinical 
efficacy of three-dimensional printing and navigation 
technology assisted lumbar cortical bone trajectory screw 
placement. Chinese Journal of Tissue Engineering Research. 
23(12):1864-1869. 
21. Wan L, Zhang X, Zhang S, et al. Clinical feasibility and 
application value of computer virtual reduction combined with 
3D printing technique in complex acetabular fractures. Exp 
Ther Med. 2019; 17(5):3630-3636. 
doi:10.3892/etm.2019.7344.
22. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing 
technology and materials for treatment of elbow fractures. Int 
Orthop. 2017; 41(11):2381-2387. doi:10.1007/s00264-017-
3627-7.
23. Yin HW, Feng JT, Yu BF, Shen YD, dong Gu Y, dong Xu W. 3D 
printing-assisted percutaneous fixation makes the surgery for 
scaphoid nonunion more accurate and less invasive. J Orthop 
Translat. 2020; 24(December 2019):138-143. 
doi:10.1016/j.jot.2020.01.007.
24. Giannetti S, Bizzotto N, Stancati A, Santucci A. Minimally 
invasive fixation in tibial plateau fractures using an preoperative and intra-operative real size 3D printing. Injury. 
2017; 48(3):784-788. 
doi:https://doi.org/10.1016/j.injury.2016.11.015.
25. Wang Q, Hu J, Guan J, Chen Y, Wang L. Proximal third humeral 
shaft fractures fixed with long helical PHILOS plates in elderly 
patients: Benefit of pre-contouring plates on a 3D-printed 
model-a retrospective study. J Orthop Surg Res. 2018; 13(1):1-
7. doi:10.1186/s13018-018-0908-9.
26. jun Duan X, quan Fan H, you Wang F, He P, Yang L. Application 
of 3D-printed Customized Guides in Subtalar Joint Arthrodesis. 
Orthop Surg. 2019; 11(3):405-413. doi:10.1111/os.12464.
27. Cai X, Xu Y, Yu K, et al. Clinical Application of 3-Dimensional 
Printed Navigation Templates in Treating Femoral Head 
Osteonecrosis With Pedicled Iliac Bone Graft. Ann Plast Surg. 
2020; 84(5S Suppl 3):S230–S234. 
doi:10.1097/SAP.0000000000002362.
28. Wang X, Liu S, Peng J, et al. Development of a novel customized 
cutting and rotating template for Bernese periacetabular 
osteotomy. J Orthop Surg Res. 2019; 14(1):1-10. 
doi:10.1186/s13018-019-1267-x.
29. Tian H, Zhao MW, Geng X, Zhou QY, Li Y. Patient-Specific 
Instruments Based on Knee Joint Computed Tomography and 
Full-Length Lower Extremity Radiography in Total Knee 
Replacement. Chin Med J (Engl). 2018; 131(5):583-587. 
doi:10.4103/0366-6999.226062.
30. Dai G, Shao Z, Weng Q, Zheng Y, Hong J, Lu X. Percutaneous 
reduction, cannulated screw fixation and calcium sulfate 
cement grafting assisted by 3D printing technology in the 
treatment of calcaneal fractures. J Orthop Sci. 2021; 26(4):636-
643. doi: 10.1016/j.jos.2020.06.008. 
31. Cheng H, Clymer JW, Po-Han Chen B, et al. Prolonged operative 
duration is associated with complications: a systematic review 
and meta-analysis. J Surg Res. 2018; 229:134-144. doi:https://doi.org/10.1016/j.jss.2018.03.022.
32. Duchman KR, Pugely AJ, Martin CT, Gao Y, Bedard NA, 
Callaghan JJ. Operative time affects short-term complications in 
total joint arthroplasty. J Arthroplasty. 2017; 32(4):1285-1291. 
doi: 10.1016/j.arth.2016.12.003.
33. Peersman G, Laskin R, Davis J, Peterson MGE, Richart T.
Prolonged operative time correlates with increased infection 
rate after total knee arthroplasty. HSS J. 2006; 2(1):70-72. doi: 
10.1007/s11420-005-0130-2.
34. Cregar WM, Goodloe JB, Lu Y, Gerlinger TL. Increased Operative 
Time Impacts Rates of Short-Term Complications After 
Unicompartmental Knee Arthroplasty. J Arthroplasty. 2021; 
36(2):488-494. doi:10.1016/j.arth.2020.08.032.
35. Ang WW, Sabharwal S, Johannsson H, Bhattacharya R, Gupte 
CM. The cost of trauma operating theatre inefficiency. Ann Med 
Surg (Lond). 2016; 7:24-29. doi:10.1016/j.amsu.2016.03.001.
36. Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER. 
Dosimetric characterization of a cone-beam O-arm imaging 
system. J Xray Sci Technol. 2009; 17(4):305-317. 
doi:10.3233/XST-2009-0231.
37. Lee AKX, Lin TL, Hsu CJ, Fong YC, Chen HT, Tsai CH. ThreeDimensional Printing and Fracture Mapping in Pelvic and 
Acetabular Fractures: A Systematic Review and Meta-Analysis. 
J Clin Med. 2022; 11(18). doi:10.3390/jcm11185258.
38. Papotto G, Testa G, Mobilia G, et al. Use of 3D printing and precontouring plate in the surgical planning of acetabular 
fractures: A systematic review. Orthop Traumatol Surg Res. 
2022; 108(2):103111. doi:10.1016/j.otsr.2021.103111.
39. Li K, Liu Z, Li X, Wang J. 3D printing-assisted surgery for 
proximal humerus fractures: a systematic review and metaanalysis. Eur J Trauma Emerg Surg. 2022; 48(5):3493-3503. 
doi:10.1007/s00068-021-01851-5.
40. Shi G, Liu W, Shen Y, Cai X. 3D printing-assisted extended 
lateral approach for displaced intra-articular calcaneal 
fractures: a systematic review and meta-analysis. J Orthop Surg 
Res. 2021; 16(1):682. doi:10.1186/s13018-021-02832-5.