Prospect of Mesenchymal Stem Cells in Enhancing Nerve Regeneration in Brachial Plexus Injury in Animals: A Systematic Review

Document Type : SYSTEMATIC REVIEW

Authors

1 Department of Orthopaedic and Traumatology Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

2 Department of Community Medicine, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia

10.22038/abjs.2024.68053.3224

Abstract

Objectives: Brachial plexus injuries (BPI), although rare, often results in significant morbidity. Stem cell was thought
to be one of BPI treatment modalities because of their nerve-forming regeneration potential. Although there is a 
possibility for the use of mesenchymal stem cells as one of BPI treatment, it is still limited on animal studies. 
Therefore, this systematic review aimed to analyze the role of mesenchymal stem cells in nerve regeneration in 
animal models of brachial plexus injury.
Method: This study is a systematic review with PROSPERO registration number CRD4202128321. Literature 
searching was conducted using keywords experimental, animal, brachial plexus injury, mesenchymal stem cell 
implantation, clinical outcomes, electrophysiological outcomes, and histologic outcomes. Searches were performed 
in the PubMed, Scopus, and ScienceDirect databases. The risk of bias was assessed using SYRCLE's risk of bias 
tool for animal studies. The data obtained were described and in-depth analysis was performed.
Result: Four studies were included in this study involving 183 animals from different species those are rats and 
rabbits. There was an increase in muscle weight and shortened initial onset time of muscle contraction in the group 
treated with stem cells. Electrophysiological results showed that mesenchymal stem cells exhibited higher 
(Compound muscle action potential) CMAP amplitude and shorter CMAP latency than control but not better than 
autograft. Histological outcomes showed an increase in axon density, axon number, and the formation of 
connections between nerve cells and target muscles.
Conclusion: Mesenchymal stem cell implantation to animals with brachial plexus injury showed its ability to 
regenerate nerve cells as evidenced by clinical, electrophysiological, and histopathological results. However, this 
systematic study involved experimental animals from various species so that the results cannot be uniformed, and 
conclusion should be drawn cautiously.
 Level of evidence: N/A

Keywords

Main Subjects


  1. Kaiser R, Waldauf P, Ullas G, Krajcová A. Epidemiology, etiology, and types of severe adult brachial plexus injuries requiring surgical repair: systematic review and meta-analysis. Neurosurg Rev. 2020;43(2):443-452. doi:10.1007/s10143-018-1009-2
  2. de Azevedo Filho FAS, Abdouni YA, Ogawa G, Couto de Sá CK, da Costa AC, de Moraes Barros Fucs PM. Functional outcome of oberlin procedure. Acta Ortop Bras. 2019;27(6):294-297. doi:10.1590/1413-785220192706224552
  3. Thatte MR, Babhulkar S, Hiremath A. Brachial plexus injury in adults: Diagnosis and surgical treatment strategies. Ann Indian Acad Neurol. 2013;16(1):26-33. doi:10.4103/0972-2327.107686
  4. Sakellariou VI, Badilas NK, Mazis GA, et al. Brachial Plexus Injuries in Adults: Evaluation and Diagnostic Approach. ISRN Orthop. 2014;2014:1-9. doi:10.1155/2014/726103
  5. Spinner RJ, Shin AY, Elhassan BT, Bishop AT. Traumatic Brachial Plexus Injury. In: Wolfe SW, Hotchkiss RN, Pederson WC, Kozin SH, Cohen MS, eds. Green’s Operative Hand Surgery. 7th ed. Philadelphia: Elsevier Inc.; 2017:1146-1203.
  6. Iorio ML. The Role of Peripheral Nerve Surgery in. Surgery. 2019:259-269. doi:10.1097/PRS.0b013e31820063d4
  7. Tjokorda M. Surgical Managementof Brachial Plexus Injury. 2018;11(December):2079-2084.
  8. Forli A, Bouyer M, Aribert M, et al. Upper limb nerve transfers: A review. Hand Surg Rehabil. 2017;36(3):151-172. doi:10.1016/j.hansur.2016.11.007
  9. Moore AM, Novak CB. Advances in nerve transfer surgery. J Hand Ther. 2014;27(2):96-105. doi:10.1016/j.jht.2013.12.007
  10. Primaputra MRA, Widodo W. Clinical and Functional Outcome Analysis in Patients with Traumatic Brachial Plexus Injury after Nerve and Muscle Procedure in Cipto Mangunkusumo Hospital 2010-2017. 2017.
  11. Sakuma M, Gorski G, Sheu SH, et al. Lack of motor recovery after prolonged denervation of the

 neuromuscular junction is not due to regenerative failure. Eur J Neurosci. 2016;43(3):451-462. doi:10.1111/ejn.13059

  1. Martin E, Senders JT, DiRisio AC, Smith TR, Broekman MLD. Timing of surgery in traumatic brachial plexus injury: A systematic review. J Neurosurg. 2019;130(4):1333-1345. doi:10.3171/2018.1.JNS172068
  2. Moiyadi AV, Devi BI, Nair KPS. Brachial plexus injuries: Outcome following neurotization with intercostal nerve. J Neurosurg. 2007;107(2):308-313. doi:10.3171/JNS-07/08/0308
  3. Giuffre JL, Kakar S, Bishop AT, Spinner RJ, Shin AY. Current Concepts of the Treatment of Adult Brachial Plexus Injuries. J Hand Surg Am. 2010;35(4):678-688. doi:10.1016/j.jhsa.2010.01.021
  4. Barman A, Chatterjee A, Prakash H, Viswanathan A, Tharion G, Thomas R. Traumatic brachial plexus injury: Electrodiagnostic findings from 111 patients in a tertiary care hospital in India. Injury. 2012;43(11):1943-1948. doi:10.1016/j.injury.2012.07.182
  5. Rikhtegar R, Pezeshkian M, Dolati S, et al. Stem cells as therapy for heart disease: iPSCs, ESCs, CSCs, and skeletal myoblasts. Biomed Pharmacother. 2019;109(June 2018):304-313. doi:10.1016/j.biopha.2018.10.065
  6. Takagi Y. History of neural stem cell research and its clinical application. Neurol Med Chir (Tokyo). 2016;56(3):110-124. doi:10.2176/nmc.ra.2015-0340
  7. Berebichez-Fridman R, Gómez-García R, Granados-Montiel J, et al. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells - Their Current Uses and Potential Applications. Stem Cells Int. 2017;2017. doi:10.1155/2017/2638305
  8. Dilogo IH, Phedy P, Kholinne E, et al. Autologous mesenchymal stem cell implantation, hydroxyapatite, bone morphogenetic protein-2, and internal fixation for treating critical-sized defects: a translational study. Int Orthop. 2019;43(6):1509-1519. doi:10.1007/s00264-019-04307-z
  9. Dilogo IH, Kamal AF, Gunawan B, Rawung RV.

Autologous mesenchymal stem cell (MSCs) transplantation for critical-sized bone defect following a wide excision of osteofibrous dysplasia. Int J Surg Case Rep. 2015;17:106-111. doi:10.1016/j.ijscr.2015.10.040

  1. Rahyussalim AJ, Saleh I, Kurniawati T, Lutfi APWY. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic

 

 

 

 renal failure and thoracic spinal cord entrapment: A case report. J Med Case Rep. 2017;11(1):1-7. doi:10.1186/s13256-017-1489-7

  1. Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14(3):243-257. doi:10.1016/j.scr.2015.02.003
  2. Carpentier A, Nimgaonkar I, Chu V, Xia Y, Hu Z, Liang TJ. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Res. 2016;16(3):640-650. doi:10.1016/j.scr.2016.03.009
  3. Sharma A, Sane H, Gokulchandran N, et al. Cellular Therapy for Chronic Traumatic Brachial Plexus Injury. Adv Biomed Res. 2018;7(1):51. doi:10.4103/2277-9175.228631
  4. Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019;6(July). doi:10.21037/sci.2019.06.04
  5. Bingham JR, Kniery KR, Jorstad NL, Horkayne-Szakaly I, Hoffer ZS, Salgar SK. “Stem cell therapy to promote limb function recovery in peripheral nerve damage in a rat model” – Experimental research. Ann Med Surg. 2019;41(November 2018):20-28. doi:10.1016/j.amsu.2019.03.009
  6. Hogendoorn S, Duijnisveld BJ, Van Duinen SG, et al. Local injection of autologous bone marrow cells to regenerate muscle in patients with traumatic brachial plexus injury: A pilot study. Bone Jt Res. 2014;3(2):38-47. doi:10.1302/2046-3758.32.2000229
  7. Bannerman P, James MA. Molecular mechanisms to improve nerve regeneration following damage to the immature peripheral nervous system. J Bone Jt Surg - Ser A. 2009;91(SUPPL. 4):87-89. doi:10.2106/JBJS.I.00279
  8. Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26(7-8):1235-1252. doi:10.1007/s10571-006-9029-9
  9. Yang Q, Luo M, Li P, Jin H. Transplantation of human amniotic epithelial cells repairs brachial plexus injury : pathological and biomechanical analyses. 2014;9(24):2159-2163. doi:10.4103/1673-5374.147947
  10. Sayad S, Zaminy A. Stem cell therapy for nerve injury. World J Stem Cells. 2017;9(9):144-151. doi:10.4252/wjsc.v9.i9.144
  11. Guo M, Li D, Wu L, Li M, Yang B. Bone marrow

mesenchymal stem cells repair brachial plexus injury in rabbits through ERK pathway. 2020:1515-1523.

  1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009. doi:10.1016/j.jclinepi.2009.06.005
  2. Yang J, Fang J, Li L, Chen G, Qin B, Gu L. Contralateral

 

 

 

C7 transfer combined with acellular nerve allografts seeded with differentiated adipose stem cells for repairing upper brachial plexus injury in rats. (2016). doi:10.4103/1673-5374.259626

  1. Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):1-9. doi:10.1186/1471-2288-14-43
  2. Arzillo S, Gishen K, Askari M. Brachial plexus injury: Treatment options and outcomes. J Craniofac Surg. 2014;25(4):1200-1206. doi:10.1097/SCS.0000000000000841
  3. Sumarwoto T, Suroto H, Mahyudin F, et al. Brachial plexus injury: Recent diagnosis and management. Open Access Maced J Med Sci. 2021;9:13-24. doi:10.3889/oamjms.2021.5578
  4. Xian H, Xie R, Luo C, Cong R. Comparison of Different in Vivo Animal Models of Brachial Plexus Avulsion and Its Application in Pain Study. Neural Plast. 2020;2020. doi:10.1155/2020/8875915
  5. Liu C, Qian X, Jianxiong A, et al. A New Animal Model of Brachial Plexus Neuralgia Produced by Injection of Cobra Venom into the Lower Trunk in the Rat. Pain Med (United States). 2015;16(9):1680-1689. doi:10.1111/pme.12722
  6. Jun Z, Xinying Z, Yang C, Chunjiang F. Application of spinal cord progenitor cell transplantation in brachial plexus root avulsion injury in rats. Chinese J Rehabil Reconstr Surg. 2005;19(11).
  7. Seddighi A, Nikouei A, Seddighi AS, Zali AR, Tabatabaei SM. Peripheral Nerve Injury: a Review Article. Int Clin Neurosci J. 2016;3(1):1-6. doi:10.22037/icnj.v3i1.12016
  8. Menorca RMG, Fussell TS, Elfar JC. Peripheral Nerve Trauma: Mechanisms of Injury and Recovery. Hand Clin. 2013;29(3):317-330. doi:10.1016/j.hcl.2013.04.002.Peripheral
  9. Palispis WA, Gupta R. Surgical repair in humans after traumatic nerve injury provides limited functional neural regeneration in adults. Exp Neurol. 2017;290:106-114. doi:10.1016/j.expneurol.2017.01.009
  10. Liu Y, Lao J, Gao K, Gu Y, Zhao X. Functional outcome of nerve transfers for traumatic global brachial plexus avulsion. Injury. 2013;44(5):655-660. doi:10.1016/j.injury.2012.02.006
  11. Kachramanoglou C, Carlstedt T, Koltzenburg M, Choi D. Long-Term Outcome of Brachial Plexus Reimplantation After Complete Brachial Plexus Avulsion Injury. World Neurosurg. 2017;103:28-36.

doi:10.1016/j.wneu.2017.03.052

  1. Grimoldi N, Colleoni F, Tiberio F, et al. Stem cell salvage of injured peripheral nerve. Cell Transplant. 2015;24(2):213-222. doi:10.3727/096368913X675700
  2. Zhang W, Fang X, Zhang C, et al. Transplantation of

 

 

 

embryonic spinal cord neurons to the injured distal nerve promotes axonal regeneration after delayed nerve repair. Eur J Neurosci. 2017;45(6):750-762. doi:10.1111/ejn.13495

  1. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(68):1-22. doi:10.1186/s13287-019-1165-5
  2. Zhang RC, Du WQ, Zhang JY, et al. Mesenchymal stem cell treatment for peripheral nerve injury: A narrative review. Neural Regen Res. 2021;16(11):2170-2176. doi:10.4103/1673-5374.310941
  3. Cooney DS, Wimmers EG, Ibrahim Z, et al. Mesenchymal Stem Cells Enhance Nerve Regeneration in a Rat Sciatic Nerve Repair and Hindlimb Transplant Model. Sci Rep. 2016;6(July):1-12. doi:10.1038/srep31306
  4. Tatullo M, Gargiulo IC, Dipalma G, et al. Stem cells and regenerative medicine. Transl Syst Med Oral Dis. 2019:387-407. doi:10.1016/B978-0-12-813762-8.00017-7
  5. Burnett MG, Zager EL, Urnett MARKGB, Ager ERICLZ. Pathophysiology of peripheral nerve injury : a brief review. Neurosurg Focus. 2004;16(5):1-7. doi:10.3171/foc.2004.16.5.2
  6. Yi S, Zhang Y, Gu X, et al. Application of stem cells in peripheral nerve regeneration. Burn Trauma. 2020;8. doi:10.1093/burnst/tkaa002
  7. Zheng C, Zhu Q, Liu X, et al. Improved peripheral nerve regeneration using acellular nerve allografts loaded with platelet-rich plasma. Tissue Eng - Part A. 2014;20(23-24):3228-3240. doi:10.1089/ten.tea.2013.0729
  8. Lavorato A, Raimondo S, Boido M, et al. Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: Systematic review. Int J Mol Sci. 2021;22(2):1-22. doi:10.3390/ijms22020572
  9. Chen L, Lu LJ, Meng XT, Chen D, Zhang ZX, Yang F. Reimplantation combined with transplantation of transgenic neural stem cells for treatment of brachial plexus root avulsion. Chinese J Traumatol - English Ed. 2008;11(5):267-273. doi:10.1016/S1008-1275(08)60054-1
  10. Andrade BM, Baldanza MR, Ribeiro KC, et al. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model. PLoS One. 2015;10(6):1-13. doi:10.1371/journal.pone.0127561
  11. Yang J. Mesenchymal Stem Cells Therapy for

 Muscular Atrophy and Sarcopenia. Epidemiol Int J. 2022;6(2). doi:10.23880/eij-16000231

  1. Tos P, Crosio A, Pellegatta I, et al. Efficacy of anti-adhesion gel of carboxymethylcellulose with polyethylene oxide on peripheral nerve: Experimental results on a mouse model. Muscle and Nerve.

 

 

 

2016;53(2):304-309. doi:10.1002/mus.24739

  1. Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysiol. 2008;119(9):1951-1965. doi:10.1016/j.clinph.2008.03.018
  2. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther. 2019;27(1):25-33. doi:10.4062/biomolther.2017.260
  3. Su H, Wang L, Cai J, et al. Transplanted motoneurons derived from human induced pluripotent stem cells form functional connections with target muscle. Stem Cell Res. 2013;11(1):529-539. doi:10.1016/j.scr.2013.02.007
  4. Texakalidis P, Hardcastle N, Tora MS, Boulis NM. Functional restoration of elbow flexion in nonobstetric brachial plexus injuries: A meta-analysis of nerve transfers versus grafts. Microsurgery. 2020;40(2):261-267. doi:10.1002/micr.30510
  5. Moran SL, Steinmann SP, Shin AY. Adult brachial plexus injuries: Mechanism, patterns of injury, and physical diagnosis. Hand Clin. 2005;21(1):13-24. doi:10.1016/j.hcl.2004.09.004
  6. Mansukhani KA. Electrodiagnosis in traumatic brachial plexus injury. Ann Indian Acad Neurol. 2013;16(1):19-25. doi:10.4103/0972-2327.107682
  7. Ferrante MA. Electrodiagnostic assessment of the brachial plexus. Neurol Clin. 2012;30(2):551-580. doi:10.1016/j.ncl.2011.12.005
  8. Rodriguez AG, Gonzales SA, Melero NC, Arufe MC. Acellular nerve graft enriched with mesenchymal stem cells in the transfer of the phrenic nerve to the musculocutaneous nerve in a C5-C6 brachial plexus avulsion in a rat model. Microsurgery. 2021;42:57-65. doi:10.1002/micr.30829
  9. Saeki S, Tokutake K, Takasu M, et al. Functional Reconstruction of Denervated Muscle by Xenotransplantation of Neural Cells from Porcine to Rat. Int J Mol Sci. 2022;23(15). doi:10.3390/ijms23158773
  10. Yarar E, Kuruoglu E, Kocabıcak E, et al. Electrophysiological and histopathological effects of mesenchymal stem cells in treatment of experimental rat model of sciatic nerve injury. Int J Clin Exp Med. 2015;8(6):8776-8784.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Hundepool CA, Nijhuis THJ, Mohseny B, Selles RW, Hovius SER. The effect of stem cells in bridging peripheral nerve defects: A meta-analysis - A review. J Neurosurg. 2014;121(1):195-209. doi:10.3171/2014.4.JNS131260
  2. Wang D, Li J, Zhang Y, et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: A multicenter clinical study. Arthritis Res Ther. 2014;16(2). doi:10.1186/ar4520
  3. Kurwale NS, Suri V, Srivastava A, et al. Role of bone marrow derived pluripotent stem cells in peripheral nerve repair in adult rats: A morphometric evaluation. J Neurosci Rural Pract. 2015;6(2):152-159. doi:10.4103/0976-3147.153218
  4. Dadon-Nachum M, Sadan O, Srugo I, Melamed E, Offen D. Differentiated Mesenchymal Stem Cells for Sciatic Nerve Injury. Stem Cell Rev Reports.

2011;7(3):664-671. doi:10.1007/s12015-010-9227-1

  1. Goel RK, Suri V, Suri A, et al. Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci. 2009;16(9):1211-1217. doi:10.1016/j.jocn.2009.01.031
  2. Matsuse D, Kitada M, Kohama M, et al. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional schwann cells that sustain peripheral nerve regeneration. J Neuropathol Exp Neurol. 2010;69(9):973-985. doi:10.1097/NEN.0b013e3181eff6dc