Use of Bio-integrative Screws for Fixation of Lisfranc Instability - Results from a Cadaver Study

Document Type : RESEARCH PAPER

Authors

1 Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

2 1 Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 2 FARIL-SORG Collaborative, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA

Abstract

Background: Majority of Lisfranc fracture-dislocations require anatomic reduction and rigid internal fixation to prevent debilitating sequelae. Current methods include solid screws and flexible fixations which have been in use for many years. Biointegrative screw is a newer option that has not yet been thoroughly investigated for its effectiveness for Lisfranc injuries.
Methods: The ligaments of the Lisfranc complex were resected in eight lower-leg cadaveric specimens. This was done by eight foot and ankle surgeons individually. Distraction forces were applied from opposite sides at the joint to replicate weight bearing conditions. Three methods of fixation – flexible fixation, metal, and biointegrative screws- were evaluated. The diastasis and area at the level of the ligament were measured at four conditions (replicated injury and each type of fixation) in neutral and distraction conditions using fluoroscopy images. The Wilcoxon test and Kruskal Wallis test were used for comparison. P value <0.05 was considered statistically significant.
Results: The diastasis values for the transected ligament scenario were greater than those after all three fixation methods (without distraction) and for metal screw and biointegrative screws (with distraction) (p<0.001). The area at the level of the ligament showed higher values for transected ligament than the three fixatives (p<0.05).
Conclusion: Metal screws, flexible fixation and bio-integrative screws showed comparable effectiveness intra-op in the successful correction of Lisfranc injury.

Keywords

Main Subjects


  1. Myerson M. The diagnosis and treatment of injuries to the Lisfranc joint complex. Orthop Clin North Am. 1989; 20(4):655-664.
  2. DeOrio M, Erickson M, Usuelli FG, Easley M. Lisfranc injuries in sport. Foot Ankle Clin. 2009; 14(2):169-186. doi:10.1016/j.fcl.2009.03.008.
  3. Philpott A, Epstein DJ, Lau SC, Mnatzaganian G, Pang J. Lisfranc Fixation Techniques and Postoperative Functional Outcomes: A Systematic Review. J Foot Ankle Surg off Publ Am Coll Foot Ankle Surg. 2021; 60(1):102-108. doi:10.1053/j.jfas.2020.04.005.
  4. Scolaro J, Ahn J, Mehta S. Lisfranc fracture dislocations. Clin Orthop. 2011; 469(7):2078-2080. doi:10.1007/s11999-010-1586-z.
  5. Kuo RS, Tejwani NC, Digiovanni CW, et al. Outcome after open reduction and internal fixation of Lisfranc joint injuries. J Bone Joint Surg Am. 2000; 82(11):1609-1618. doi:10.2106/00004623-200011000-00015.
  6. Lau S, Howells N, Millar M, De Villiers D, Joseph S, Oppy A. Plates, Screws, or Combination? Radiologic Outcomes after Lisfranc Fracture Dislocation. J Foot Ankle Surg. 2016; 55(4):799-802. doi:10.1053/j.jfas.2016.03.002.
  7. Cho J, Kim J, Min TH, et al. Suture Button vs Conventional Screw Fixation for Isolated Lisfranc Ligament Injuries. Foot Ankle Int. 2021; 42(5):598-608. doi:10.1177/1071100720976074.
  8. Ahmad J, Jones K. Randomized, Prospective Comparison of Bioabsorbable and Steel Screw Fixation of Lisfranc Injuries. J Orthop Trauma. 2016; 30(12):676-681. doi:10.1097/BOT.0000000000000663.
  9. Ly TV, Coetzee JC. Treatment of primarily ligamentous Lisfranc joint injuries: primary arthrodesis compared with open reduction and internal fixation. A prospective, randomized study. J Bone Joint Surg Am. 2006; 88(3):514-520. doi:10.2106/JBJS.E.00228.
  10. Alberta FG, Aronow MS, Barrero M, Diaz-Doran V, Sullivan RJ, Adams DJ. Ligamentous Lisfranc joint injuries: a biomechanical comparison of dorsal plate and transarticular screw fixation. Foot Ankle Int. 2005; 26(6):462-473. doi:10.1177/107110070502600607.
  11. Thordarson DB, Hurvitz G. PLA Screw Fixation of Lisfranc Injuries. Foot Ankle Int. 2002; 23(11):1003-1007. doi:10.1177/107110070202301106.
  12. Hovis WD, Kaiser BW, Watson JT, Bucholz RW. Treatment of syndesmotic disruptions of the ankle with bioabsorbable screw fixation. J Bone Joint Surg Am. 2002; 84(1):26-31. doi:10.2106/00004623-200201000-00005.
  13. Daghino W, Bistolfi A, Aprato A, Massè A. Bioabsorbable implants in foot trauma surgery. Injury. 2019; 50 Suppl 4:S47-S55. doi:10.1016/j.injury.2019.01.016.
  14. Shrout PE. Measurement reliability and agreement in psychiatry. Stat Methods Med Res. 1998; 7(3):301-317. doi:10.1191/096228098672090967.
  15. Saxena A. Bioabsorbable Screws for Reduction of Lisfranc’s Diastasis in Athletes. J Foot Ankle Surg. 2005; 44(6):445-449. doi:10.1053/j.jfas.2005.07.019.
  16. Böstman O, Hirvensalo E, Vainionpää S, Vihtonen K, Tórmälä P, Rokkanen P. Degradable polyglycolide rods for the internal fixation of displaced bimalleolar fractures. Int Orthop. 1990; 14(1):1-8. doi:10.1007/BF00183354.
  17. De Bruijn J, Hagemeijer NC, Rikken QGH, et al. Lisfranc injury: Refined diagnostic methodology using weightbearing and non-weightbearing radiographs. Injury. 2022; 53(6):2318-2325. doi:10.1016/j.injury.2022.02.040.
  18. Jansen MM, Hazenberg CEVB, de Ruiter QMB, van Hamersvelt RW, Bleys RLAW, van Herwaarden JA. Feasibility of fresh frozen human cadavers as a research and training model for endovascular image guided interventions. PloS One. 2020; 15(11):e0242596. doi:10.1371/journal.pone.0242596.
  19. Mathur V, Osei-Hwedieh DO, Sayyed Hosseinian SH, et al. Listract Test: A Standardized Assessment Method for Isolated Lisfranc Instability in Cadaver Models. Orthopedics; 2023. doi:10.1101/2023.01.16.23284641.
  20. Pisecky L, Luger M, Klasan A, Gotterbarm T, Klotz MC, Hochgatterer R. Bioabsorbable implants in forefoot surgery: a review of materials, possibilities and disadvantages. EFORT Open Rev. 2021; 6(12):1132-1139. doi:10.1302/2058-5241.6.200157.
  21.