1. Sabater-Martos M, Verdejo MA, Morata L, et al. Antimicrobials
in polymethylmethacrylate: from prevention to prosthetic
joint infection treatment: basic principles and risk of
resistance. Arthroplasty. 2023; 5(1):1-13. doi:
10.1186/s42836-023-00166-7.
2. Rohm O. On the polymerization products of acrylic acid.
Chemistry (dissertation) University of Tubingen, Tubingen.
1901.
3. Charnley J. The bonding of prostheses to bone by cement. Clin
Orthop Relat Res.1964; 46(3):518-529. doi: 10.1007/s11999-
010-1545-8.
4. Smith DC. The genesis and evolution of acrylic bone cement.
Orthop Clin North Am. 2005; 36(1):1-10. doi:
10.1016/j.ocl.2004.06.012.
5. Huzum B, Puha B, Necoara RM, et al. Biocompatibility
assessment of biomaterials used in orthopedic devices: An overview. Exp Ther Med. 2021; 22(5):1-9. doi:
10.3892/etm.2021.10750.
6. Corró S, García-Albó E, Andrés-Peiró JV, Teixidor J, Tomás J.
bone defect management and augmentation of distal femoral
fractures with polymethylmethacrylate bone cement. Journal
of Musculoskeletal Research. 2022; 25(03):2250013. doi:
10.1142/S0218957722500130.
7. Maitz MF. Applications of synthetic polymers in clinical
medicine. Biosurface and Biotribology. 2015;1(3):161-176.
doi:10.1016/j.bsbt.2015.08.002.
8. Smirnov V, Goldberg M, Khairutdinova D, et al. Synthesis and
properties of bone cement materials in the calcium
phosphate–calcium sulfate system. Inorganic Materials. 2017;
53:1075-1079. doi: 10.1134/S0020168517100132.
9. Jaeblon T. Polymethylmethacrylate: properties and
contemporary uses in orthopaedics. J Am Acad Orthop Surg.
2010; 18(5):297-305. doi: 10.5435/00124635-201005000-
00006.
10. Lewis G. Properties of acrylic bone cement: state of the art
review. J Biomed Mater Res. 1997; 38(2):155-182. doi:
10.1002/(SICI)1097.
11. Lewis G. Properties of antibiotic‐loaded acrylic bone cements
for use in cemented arthroplasties: a state‐of‐the‐art review. J
Biomed Mater Res B Appl Biomater. 2009; 89(2):558-574.
doi: 10.1002/jbm.b.31220.
12. Lewis G. Antibiotic-free antimicrobial poly (methyl
methacrylate) bone cements: A state-of-the-art review. World
J Orthop. 2022;13(4):339. doi:10.5312/wjo.v13.i4.339.
13. Graham J, Pruitt L, Ries M, Gundiah N. Fracture and fatigue
properties of acrylic bone cement: the effects of mixing
method, sterilization treatment, and molecular weight. J
Arthroplasty. 2000; 15(8):1028-1035.
doi:10.1054/arth.2000.8188.
14. An Y, Alvi F, Kang Q, et al. Effects of sterilization on implant
mechanical property and biocompatibility. nt J Artif Organs.
2005; 28(11):1126-1137. doi:
10.1177/039139880502801110.
15. Harper E, Braden M, Bonfield W, Dingeldein E, Wahlig H.
Influence of sterilization upon a range of properties of
experimental bone cements. J Mater Sci Mater Med. 1997;
8(12):849-853. doi: 10.1023/A:1018545519964.
16. Mjöberg B, Pettersson H, Rosenqvist R, Rydholm A. Bone
cement, thermal injury and the radiolucent zone. Acta Orthop
Scand. 1984; 55(6):597-600. doi:
10.3109/17453678408992403.
17. Urrutia J, Bono CM, Mery P, Rojas C. Early histologic changes
following polymethylmethacrylate injection (vertebroplasty)
in rabbit lumbar vertebrae. Spine (Phila Pa 1976). 2008;
33(8):877-882. doi:10.1097/BRS.0b013e31816b46a5.
18. Donaldson A, Thomson H, Harper N, Kenny N. Bone cement
implantation syndrome. Br J Anaesth. 2009; 102(1):12-22.
doi:https://doi.org/10.1093/bja/aen328.
19. Zhang Jd, Poffyn B, Sys G, Uyttendaele D. Comparison of
vertebroplasty and kyphoplasty for complications. Orthop
Surg. 2011; 3(3):158-160. doi:10.1111/j.1757-
7861.2011.00141.x.
20. Corcos G, Dbjay J, Mastier C, et al. Cement leakage in
percutaneous vertebroplasty for spinal metastases: a
retrospective evaluation of incidence and risk factors. Spine
(Phila Pa 1976). 2014; 39(5):E332-E338.
doi:10.1097/BRS.0000000000000134.
21. Severi C, Sferra R, Scirocco A, et al. Contribution of intestinal
smooth muscle to Crohn’s disease fibrogenesis. Eur J
Histochem. 2014; 58(4).doi:10.4081/ejh.2014.2457.
22. Samad HA, Jaafar M, Othman R, Kawashita M, Razak NHA.
New bioactive glass-ceramic: synthesis and application in
PMMA bone cement composites. B Biomed Mater Eng. 2011;
21(4):247-258. doi: 10.3233/BME-2011-0673.
23. De Mori A, Di Gregorio E, Kao AP, et al. Antibacterial PMMA
composite cements with tunable thermal and mechanical
properties. ACS Omega. 2019; 4(22):19664-19675.
doi:10.1021/acsomega.9b02290.
24. Khandaker M, Vaughan MB, Morris TL, White JJ, Meng Z.
Effect of additive particles on mechanical, thermal, and cell
functioning properties of poly (methyl methacrylate) cement.
Int J Nanomedicine. 2014; 9:2699. doi:10.2147/IJN.S61964.
25. Zapata MEV, Ruiz Rojas LM, Mina Hernández JH, DelgadoOspina J, Tovar CDG. Acrylic Bone Cements Modified with
Graphene Oxide: Mechanical, Physical, and Antibacterial
Properties. Polymers (Basel). 2020; 12(8):1773. doi:
10.3390/polym12081773.
26. Wang Y, Shen S, Hu T, et al. Layered double hydroxide
modified bone cement promoting osseointegration via
multiple osteogenic signal pathways. ACS Nano. 2021;
15(6):9732-9745. doi:10.1021/acsnano.1c00461.
27. Tsukeoka T, Suzuki M, Ohtsuki C, et al. Mechanical and
histological evaluation of a PMMA-based bone cement
modified with γ-methacryloxypropyltrimethoxysilane and
calcium acetate. Biomaterials. 2006; 27(21):3897-3903.
doi:10.1016/j.biomaterials.2006.03.002.
28. Robo C, Hulsart-Billström G, Nilsson M, Persson C. In vivo
response to a low-modulus PMMA bone cement in an ovine
model. Acta Biomater. 2018; 72:362-370.
doi:10.1016/j.actbio.2018.03.014.
29. Phakatkar AH, Shirdar MR, Qi M-l, et al. Novel PMMA bone
cement nanocomposites containing magnesium phosphate
nanosheets and hydroxyapatite nanofibers. Mater Sci Eng C
Mater Biol Appl. 2020; 109:110497.
doi:10.1016/j.msec.2019.110497.
30. Zhu J, Yang S, Cai K, et al. Bioactive poly (methyl
methacrylate) bone cement for the treatment of osteoporotic
vertebral compression fractures. Theranostics. 2020;
10(14):6544. doi:10.7150/thno.44428.
31. Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of zinc,
magnesium, and iron ions on bone tissue engineering. ACS
Biomater Sci Eng. 2022; 8(6):2321-2335.
doi:10.1021/acsbiomaterials.2c00368.
32. Maluta T, Lavagnolo U, Segalla L, et al. Evaluation of
biocompatibility, osteointegration and biomechanical
properties of the new Calcemex® cement: An in vivo study.
Eur J Histochem. 2022; 66(1).doi:10.4081/ejh.2022.3313.
33. Wang C, Tong J. Interfacial strength of novel
PMMA/HA/nanoclay bone cement. Biomed Mater Eng. 2008;
18(6):367-375. doi: 10.3233/BME-2008-0553.
34. Canul‐Chuil A, Vargas‐Coronado R, Cauich‐Rodríguez J,
Martínez‐Richa A, Fernandez E, Nazhat S. Comparative study
of bone cements prepared with either HA or α‐TCP and
functionalized methacrylates. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of
the Society for Biomaterials, the Japanese Society for
Biomaterials, and the Australian Society for Biomaterials and
the Korean Society for Biomaterials. 2003; 64(1):27-37.
doi:10.1002/jbm.b.10486.
35. Goto K, Hashimoto M, Takadama H, et al. Mechanical, setting,
and biological properties of bone cements containing micronsized titania particles. J Mater Sci Mater Med. 2008;
19(3):1009-16. doi: 10.1007/s10856-007-3076-8.
36. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. A new
bioactive bone cement: effect of glass bead filler content on
mechanical and biological properties. J Biomed Mater Res.
2001; 54(4):491-500. doi: 10.1002/1097-
4636(20010315)54:4<491::AID-JBM40>3.0.CO;2-O.
37. Siddique A, Cooke ME, Weber MH, Rosenzweig DH.
Nanoparticle-Functionalized Acrylic Bone Cement for Local
Therapeutic Delivery to Spinal Metastases. bioRxiv.
2023:2023.02. 06.527220. doi:10.1101/2023.02.06.527220.
38. Świeczko-Żurek B, Zieliński A, Bociąga D, Rosińska K,
Gajowiec G. Influence of Different Nanometals Implemented
in PMMA Bone Cement on Biological and Mechanical
Properties. Nanomaterials (Basel). 2022; 12(5):732. doi:
org/10.3390/nano12050732.
39. Hench LL. Biomaterials, an interfacial approach. Biophysics
and bioengineering series. 1982; 4:62-86. doi: 10009762068.
40. Kokubo T, Ito S, Huang Z, et al. Ca, P‐rich layer formed on
high‐strength bioactive glass‐ceramic A‐W. J Biomed Mater
Res. 1990;24(3):331-343. doi: 10.1002/jbm.820240306.
41. Nakhaei M, Jirofti N, Ebrahimzadeh MH, Moradi A. Different
methods of hydroxyapatite‐based coatings on external fixator
pin with high adhesion approach. Plasma Processes and
Polymers. 2023:e2200219. doi: 10.1002/ppap.202200219.
42. Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T.
Mechanical properties of a new type of apatite-containing
glass-ceramic for prosthetic application. Journal of Materials
Science. 1985; 20:2001-2004. doi: 10.1007/BF01112282.
43. Movaffagh J, Bazzaz BSF, Taherzadeh Z, et al. Evaluation of
wound-healing efficiency of a functional Chitosan/Aloe vera
hydrogel on the improvement of re-epithelialization in full
thickness wound model of rat. J Tissue Viability. 2022;
31(4):649-656. doi:0.1016/j.jtv.2022.07.009.
44. Kazemzadeh G, Jirofti N, Kazemi Mehrjerdi H, et al. A review
on developments of in-vitro and in-vivo evaluation of hybrid
PCL-based natural polymers nanofibers scaffolds for vascular
tissue engineering. Journal of Industrial Textiles. 2022;
52:15280837221128314. doi:
10.1177/15280837221128314.
45. Rahnama S, Movaffagh J, Shahroodi A, et al. Development and
characterization of the electrospun melittin-loaded chitosan
nanofibers for treatment of acne vulgaris in animal model.
Journal of Industrial Textiles. 2022; 52:15280837221112410.
doi: 10.1177/15280837221112410.
46. Jirofti N, Shahroodi A, Movaffagh J, Fazly Bazzaz BS, Robbati
RY, Hashemi M. Fabrication and Structural, Mechanical, and
Biological Characterization of Vancomycin-Loaded ChitosanHydroxyapatite-Gelatin Beads for Local Treatment of
Osteomyelitis. Journal of Mazandaran University of Medical
Sciences. 2023; 33(220):1-18.
47. Albanna MZ, Bou-Akl TH, Blowytsky O, Walters III HL,
Matthew HW. Chitosan fibers with improved biological and
mechanical properties for tissue engineering applications. J
Mech Behav Biomed Mater. 2013; 20:217-226.
doi:10.1016/j.jmbbm.2012.09.012.
48. Tunney MM, Brady AJ, Buchanan F, Newe C, Dunne NJ.
Incorporation of chitosan in acrylic bone cement: effect on
antibiotic release, bacterial biofilm formation and mechanical
properties. J Mater Sci Mater Med. 2008; 19:1609-1615. doi:
10.1007/s10856-008-3394-5.
49. Baroud G, Vant C, Wilcox R. Long-term effects of
vertebroplasty: adjacent vertebral fractures. J Long Term Eff
Med Implants. 2006; 16(4):265-80. doi:
10.1615/jlongtermeffmedimplants.v16.i4.10.
50. Pflugmacher R, Schroeder R-J, Klostermann C. Incidence of
adjacent vertebral fractures in patients treated with balloon
kyphoplasty: two years’ prospective follow-up. Acta Radiol.
2006; 47(8):830-840. doi: 10.1080/02841850600854928.
51. Chen X-s, Jiang J-m, Sun P-d, Zhang Z-f, Ren H-l. How the
clinical dosage of bone cement biomechanically affects
adjacent vertebrae. J Orthop Surg Res. 2020; 15:1-8. doi:
10.1186/s13018-020-01906-0.
52. Boger A, Heini P, Windolf M, Schneider E. Adjacent vertebral
failure after vertebroplasty: a biomechanical study of lowmodulus PMMA cement. Eur Spine J. 2007; 16:2118-2125.
doi: 10.1007/s00586-007-0473-0.
53. Robo C, Wenner D, Ubhayasekera SKA, Hilborn J, ÖhmanMägi C, Persson C. Functional properties of low-modulus
PMMA bone cements containing linoleic acid. J Funct
Biomater. 2021; 12(1):5. doi: 10.3390/jfb12010005.
54. Ayyachi T, Pappalardo D, Finne‐Wistrand A. Defining the role
of linoleic acid in acrylic bone cement. Journal of Applied
Polymer Science. 2022; 139(25):e52409. doi:
10.1002/app.52409.
55. Fahmy HM, Ebrahim NM, Gaber MH. In-vitro evaluation of
copper/copper oxide nanoparticles cytotoxicity and
genotoxicity in normal and cancer lung cell lines. J Trace Elem
Med Biol. 2020; 60:126481.
doi:10.1016/j.jtemb.2020.126481.
56. Greulich C, Diendorf J, Gessmann J, et al. Cell type-specific
responses of peripheral blood mononuclear cells to silver
nanoparticles. Acta Biomater. 2011; 7(9):3505-3514.
doi:10.1016/j.actbio.2011.05.030.
57. Sebastian S, Liu Y, Christensen R, Raina DB, Tägil M, Lidgren
L. Antibiotic containing bone cement in prevention of hip and
knee prosthetic joint infections: a systematic review and
meta-analysis. J Orthop Translat. 2020; 23:53-60.
doi:10.1016/j.jot.2020.04.005.
58. Shen S-C, Letchmanan K, Chow PS, Tan RBH. Antibiotic
elution and mechanical property of TiO2 nanotubes
functionalized PMMA-based bone cements. J Mech Behav
Biomed Mater. 2019; 91:91-98.
doi:10.1016/j.jmbbm.2018.11.020.
59. Kalalinia F, Taherzadeh Z, Jirofti N, et al. Evaluation of wound
healing efficiency of vancomycin-loaded electrospun
chitosan/poly ethylene oxide nanofibers in full thickness
wound model of rat. Int J Biol Macromol. 2021; 177:100-110.
doi:10.1016/j.ijbiomac.2021.01.209.
60. Jirofti N, Mohebbi-Kalhori D, Masoumi R. Enhancing
biocompatibility of PCL/PU nano-structures to control the water wettability by NaOH hydrolysis treatment for tissue
engineering applications. Journal of Industrial Textiles. 2022;
51(2_suppl):3278S-3296S. doi:
10.1177/1528083720963268.
61. Woldemariam MH, Belingardi G, Koricho EG, Reda DT. Effects
of nanomaterials and particles on mechanical properties and
fracture toughness of composite materials: A short review.
AIMS Mater Sci. 2019; 6:1191-1212.
doi:10.3934/matersci.2019.6.1191.
62. Chou CC, Chang JL, Zen JM. Spherical and Anisotropic Copper
Nanomaterials in Medical Diagnosis. Nanotechnologies for
the Life Sciences: Online. 2007. doi:
10.1002/9783527610419.ntls0124.
63. Bapat RA, Chaubal TV, Joshi CP, et al. An overview of
application of silver nanoparticles for biomaterials in
dentistry. Mater Sci Eng C Mater Biol Appl. 2018; 91:881-898.
doi:10.1016/j.msec.2018.05.069.
64. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new
generation of nanoproduct in biomedical applications. Trends
Biotechnol. 2010; 28(11):580-588.
doi:10.1016/j.tibtech.2010.07.006.
65. Wekwejt M, Moritz N, Świeczko-Żurek B, Pałubicka A.
Biomechanical testing of bioactive bone cements–a
comparison of the impact of modifiers: antibiotics and
nanometals. Polymer Testing. 2018; 70:234-243.
doi:10.1016/j.polymertesting.2018.07.014.
66. Wekwejt M, Michalska-Sionkowska M, Bartmański M, et al.
Influence of several biodegradable components added to
pure and nanosilver-doped PMMA bone cements on its
biological and mechanical properties. Mater Sci Eng C Mater
Biol Appl. 2020; 117:111286.
doi:10.1016/j.msec.2020.111286.
67. Bhattacharya K, Mukherjee SP, Gallud A, et al. Biological
interactions of carbon-based nanomaterials: From coronation
to degradation. Nanomedicine. 2016; 12(2):333-351.
doi:10.1016/j.nano.2015.11.011.
68. Paz E, Ballesteros Y, Abenojar J, Del Real J, Dunne NJ.
Graphene oxide and graphene reinforced PMMA bone
cements: Evaluation of thermal properties and
biocompatibility. Materials (Basel). 2019; 12(19):3146. doi:
10.3390/ma12193146.
69. Xu S-J, Qiu Z-Y, Wu J-J, et al. Osteogenic differentiation gene
expression profiling of hMSCs on hydroxyapatite and
mineralized collagen. Tissue Eng Part A. 2016; 22(1-2):170-
181. doi: 10.1089/ten.tea.2015.0237.
70. Satish BRJ, Thadi M, Thirumalaisamy S, Sunil A,
Basanagoudar PL, Leo B. How Much Bone Cement Is Utilized
for Component Fixation in Primary Cemented Total Knee
Arthroplasty? Arch Bone Jt Surg. 2018 Sep;6(5):381-389.
PMID: 30320178; PMCID: PMC6168233.