Comparative Bending Strength of Metacarpal Neck Fractures Fixed with Two Types of Intramedullary Screws

Document Type : RESEARCH PAPER

Authors

1 Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, USA

2 Drexel University Department of Mechanical Engineering, Philadelphia, Pennsylvania, USA

Abstract

Objectives: Intramedullary (IM) screw fixation of metacarpal fractures is a technique, which has gained 
in popularity owing to its simplicity, speedy rehabilitation, and good functional outcomes. A new, larger 
diameter, non-compression screw designed specifically for IM metacarpal fixation was recently 
introduced which could provide better fracture stability and reduce the risk of hardware failure. Our goal 
was to evaluate the strength of this screw compared to a first-generation screw.
Methods: This mechanical study was designed to compare a 4.5 mm metacarpal headless screw (MCHS) to data 
from our prior research evaluating a 3.0 mm headless screw (HS). Accordingly, we used identical bone models, 
testing constructs, equipment, and protocols. A metacarpal neck osteotomy was created in 10 Sawbones models. 
A 4.5 mm x 50 mm MCHS was inserted retrograde to stabilize the fracture. Flexion bending strength was measured 
through a cable tension construct on a materials testing machine. Failure mechanism and strength was recorded 
and compared to data with a 3.0 mm screw construct.
Results: Eight models failed by bending of the intramedullary screw. Two models failed by rotation of the metacarpal 
head. Failure occurred at an average of 539 N (Range 315 – 735 N). The MCHS demonstrated a significantly greater 
load to failure compared to the previously studied 3.0 mm HS at 215 N (P<0.05). 
Conclusion: A larger, 4.5 mm metacarpal-specific headless screw is more than twice as strong as a 3.0 mm 
diameter screw in a metacarpal neck fracture model.
 Level of evidence: II

Keywords

Main Subjects


1. Eisenberg G, Clain JB, Feinberg-Zadek N, Leibman M, Belsky 
M, Ruchelsman DE. Clinical outcomes of limited open 
intramedullary headless screw fixation of metacarpal 
fractures in 91 consecutive patients. HAND. 2019; 15(6):793-
797. doi: 10.1177/1558944719836235.
2. Jann D, Calcagni M, Giovanoli P, Giesen T. Retrograde fixation 
of metacarpal fractures with intramedullary cannulated 
headless compression screws. Hand Surg Rehabil. 2018; 
37(2):99-103. doi:10.1016/j.hansur.2017.12.005.
3. Couceiro J, Ayala H, Sanchez M, De la Red M, Velez O, Del Canto F. Intramedullary screws versus kirschner wires for metacarpal fixation, functional, and patient-related outcomes. 
Surg J (N Y). 2018; 04(01). doi: 10.1055/s-0038-1637002.
4. Nucci AM, Del Chiaro A, Addevico F, Raspanti A, Poggetti A. 
Percutaneous headless screws and wide-awake anesthesia to 
fix metacarpal and phalangeal fractures: outcomes of the first 
56 cases. J Biol Regul Homeost Agents. 2018; 32(6):1569-
1572.
5. del Piñal F, Moraleda E, Rúas JS, de Piero GH, Cerezal L. 
Minimally invasive fixation of fractures of the phalanges and 
metacarpals with intramedullary cannulated headless 
compression screws. J Hand Surg Am. 2015; 40(4):692-700. 
doi:10.1016/j.jhsa.2014.11.023.
6. Carrera Casal O, Rivera Vegas M, Estefanía Díez M, García 
Cano P, Maya Gonzalez J, Nevado Sanchez E. Percutaneous 
osteosynthesis with headless cannulated screws in the 
treatment of metacarpal and proximal and middle phalanxes 
fractures of the hand. Revista Iberoamericana de Cirugía de la 
Mano. 2018; 46(02):117-125. doi: 10.1055/s-0038-1676080.
7. Klausmeyer M, Mudgal C, Tobert D. Intramedullary fixation of 
metacarpal fractures using headless compression screws. J 
Hand Microsurg. 2016;08(03):134-139. doi:10.1055/s-0036-
1593390.
8. Ruchelsman DE, Puri S, Feinberg-Zadek N, Leibman MI, 
Belsky MR. Clinical outcomes of limited-open retrograde 
intramedullary headless screw fixation of metacarpal 
fractures. J Hand Surg Am. 2014; 39(12):2390-2395. 
doi:10.1016/j.jhsa.2014.08.016.
9. Siddiqui A, Kumar J, Jamil M, Adeel M, Kaimkhani G. Fixation 
of metacarpal fractures using intramedullary headless 
compression screws: A tertiary care institution experience. 
Cureus. 2019; 11(4):e4466. doi:10.7759/cureus.4466.
10. 10. Poggetti A, Nucci A, Giesen T, Calcagni M, Marchetti S, 
Lisanti M. Percutaneous intramedullary headless screw 
fixation and wide-awake anesthesia to treat metacarpal 
fractures: Early results in 25 patients. J Hand Microsurg. 
2018; 10(01):016-021. doi: 10.1055/s-0037-1618911.
11. 11. Doarn MC, Nydick JA, Williams BD, Garcia MJ. Retrograde 
headless intramedullary screw fixation for displaced fifth 
metacarpal neck and shaft fractures: short term results. Hand 
(N Y). 2015; 10(2):314-318. doi: 10.1007/s11552-014-9620-
3.
12. Warrender WJ, Ruchelsman DE, Livesey MG, Mudgal CS, 
Rivlin M. Low rate of complications following intramedullary 
headless compression screw fixation of metacarpal fractures. 
HAND. 2019;15(6):798-804. 
doi:10.1177/1558944719836214.
13. Boulton CL, Salzler M, Mudgal CS. Intramedullary cannulated 
headless screw fixation of a comminuted subcapital 
metacarpal fracture: Case report. J Hand Surg Am. 2010; 
35(8):1260-1263. doi:10.1016/j.jhsa.2010.04.032.
14. Jones CM, Padegimas EM, Weikert N, Greulich S, Ilyas AM, 
Siegler S. Headless Screw Fixation of Metacarpal Neck 
Fractures: A Mechanical Comparative Analysis. Hand (N Y). 
2019; 14(2):187-192. doi: 10.1177/1558944717731859.
15. Oh JR, Kim DS, Yeom JS, Kang SK, Kim YT. A comparative 
study of tensile strength of three operative fixation 
techniques for metacarpal shaft fractures in adults: A cadaver 
study. Clin Orthop Surg. 2019; 11(1):120-125. 
doi:10.4055/cios.2019.11.1.120.
16. 16. Avery DM, Klinge S, Dyrna F, et al. Headless compression 
screw versus kirschner wire fixation for metacarpal neck 
fractures: A biomechanical study. J Hand Surg Am. 2017; 
42(5). doi:10.1016/j.jhsa.2017.02.013.
17. Morway GR, Rider T, Jones CM. Retrograde intramedullary 
screw fixation for metacarpal fractures: A systematic review. 
HAND. 2021:155894472098807. doi: 
10.1177/1558944720988073.
18. Okoli M, Chatterji R, Ilyas A, Kirkpatrick W, Abboudi J, Jones 
CM. Intramedullary headless screw fixation of metacarpal 
fractures: A radiographic analysis for optimal screw choice. 
HAND. 2020; 17(2):245-253. doi: 
10.1177/1558944720919897.
19. Schuind FA. The NATO Advanced Research Workshop: 
Advances in the biomechanics of the hand and wrist, Genval 
(Belgium), May 1992. Advances in the Biomechanics of the 
Hand and Wrist. 1994:1-6. doi: 10.1007/978-1-4757-9107-
5_1.
20. Esteban-Feliu I, Gallardo-Calero I, Barrera-Ochoa S, LluchBergadà A, Alabau-Rodriguez S, Mir-Bulló X. Analysis of 3 
different operative techniques for extra-articular fractures of 
the phalanges and Metacarpals. HAND. 2019; 16(5):595-603. 
21. Beutel BG, Ayalon O, Kennedy OD, Lendhey M, Capo JT, 
Melamed E. Crossed K-Wires Versus Intramedullary Headless 
Screw Fixation of Unstable Metacarpal Neck Fractures: A 
Biomechanical Study. Iowa Orthop J. 2018; 38:153-157.
22. Melamed E, Hinds RM, Gottschalk MB, Kennedy OD, Capo JT. 
Comparison of dorsal plate fixation versus intramedullary 
headless screw fixation of unstable metacarpal shaft 
fractures. HAND. 2016; 11(4):421-426. doi: 
10.1177/1558944716628485.
23. Labèr R, Jann D, Behm P, Ferguson SJ, Frueh FS, Calcagni M. 
Intramedullary screw fixation for metacarpal shaft fractures: 
A biomechanical human cadaver study. J Hand Surg Eur 
Vol.2020; 45(6):595-600. doi: 10.1177/1753193419898066.
24. Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill 
CL. Hand grip strength: Age and gender stratified normative 
data in a population-based study. BMC Res Notes. 2011; 
4:127. doi: 10.1186/1756-0500-4-127.
25. ten Berg PWL, Mudgal CS, Leibman MI, Belsky MR, 
Ruchelsman DE. Quantitative 3-dimensional CT analyses of 
intramedullary headless screw fixation for metacarpal neck 
fractures. J Hand Surg Am. 2013; 38(2). 
doi:10.1016/j.jhsa.2012.09.029.
26. Stirling PHC, Broll RD, Molyneux SG, Oliver CW, McQueen MM, 
Duckworth AD. Percutaneous fixation of acute scaphoid waist 
fractures: Long-term patient-reported functional outcomes 
and satisfaction at a mean of 11 years following surgery. 
Hand Surg Rehabil. 2021; 40(3):293-298. 
doi:10.1016/j.hansur.2021.02.002.