Is Masquelet Technique A Successful Viable Treatment In Reconstructing Large Tumor Bone Gaps in Adolescent and Adult?

Document Type : RESEARCH PAPER

Authors

1 Lady Hardinge Medical College, Delhi, India

2 Maulana Azad Medical College, Delhi, India

Abstract

Objectives: The reconstruction of large bony defect caused by tumor resection can be managed by 
different technique like bone graft, Masquelet technique, mega-prosthesis etc. Literature lacks studies 
discussing Masquelet technique in tumor cases especially pertaining to infected tumor in adults. We 
aimed to determine 1) How often and how fast is the bone healing achieved after resection greater than 
10 cm bone in tumour patient’s using Masquelet technique?, 2) Whether Masquelet technique can 
achieve optimum outcomes in adult infected cases too?
Methods: We reviewed 154 patients of benign & malignant tumour managed by us between 2013 and 2019. 
Patients belonging to all the age group with infected tumor/diaphysial tumor/periarticular tumor, where single stage 
surgery or mega-prosthesis is not a viable option and were treated with Masquelet technique for reconstructing a 
bone defect of at least 10 cm were included in our study. We evaluated outcomes of eight patients for four 
parameters i.e. bony union, healing index, number of re-do surgeries required and limb length discrepancy.
Results: Mean age of our study group was 20.25 years and patients followed for mean duration of 3.36 years. 
Mean bone loss after tumor resection was 13.1 cm (range = 11.5 cm to 15 cm). There was no sign of recurrence of 
tumor in any patient at the time of last follow up. Average time required to achieve bony union was 23.25 months 
(mean healing index of 1.67 months/cm). All but one patient achieved bony union. Mean limb length discrepancy 
seen was 1.44cm. Infected cases showed low healing index with higher percentage of re-do surgeries.
Conclusion: Induced membrane technique is quick, safe and reliable alternative method of reconstruction to megaprosthesis in cases with all age group where risk of failure of mega-prosthesis is high, either due to infection or 
shorter expected lifespan of prosthesis. However, obtaining union can be a difficult preposition in infected tumor 
cases and multiple surgeries may be required to get the desired result even after two stages. However, a 
comparative study with large sample size is required to further validate our results.
 Level of evidence: IV

Keywords

Main Subjects


1. Grimer RJ. Surgical options for children with osteosarcoma. 
Lancet Oncol. 2005; 6(2):85-92. doi: 10.1016/S1470-
2045(05)01734-1.
2. Aldlyami E, Abudu A, Grimer RJ, Carter SR, Tillman RM. 
Endoprosthetic replacement of diaphyseal bone defects. 
Long-term results. Int Orthop. 2005; 29(1):25-9. doi: 
10.1007/s00264-004-0614-6.
3. Alman BA, De Bari A, Krajbich JI. Massive allografts in the 
treatment of osteosarcoma and Ewing sarcoma in children 
and adolescents. JBJS. 1995; 77(1):54-64. Alman BA, De Bari 
A, Krajbich JI. Massive allografts in the treatment of 
osteosarcoma and Ewing sarcoma in children and 
adolescents. J Bone Joint Surg Am. 1995; 77(1):54-64. doi: 
10.2106/00004623-199501000-00008.
4. Hattori H, Mibe J, Yamamoto K. Modular megaprosthesis in 
metastatic bone disease of the femur. Orthopedics. 2011; 
34(12):e871-6. doi: 10.3928/01477447-20111021-13.
5. Choong PF, Sim FH, Pritchard DJ, Rock MG, Chao EY. 
Megaprostheses after resection of distal femoral tumors: a 
rotating hinge design in 30 patients followed for 2-7 years. 
Acta Orthop Scand. 1996; 67(4):345-51. doi: 
10.3109/17453679609002328.
6. Jawad MU, Brien EW. Proximal femoral reconstruction with a 
constrained acetabulum in oncologic patients. Orthopedics. 
2014; 37(2):e187-93. doi: 10.3928/01477447-20140124-24.
7. Biau DJ, Pannier S, Masquelet AC, Glorion C. Case report: 
reconstruction of a 16-cm diaphyseal defect after Ewing’s 
resection in a child. Clin Orthop Relat Res. 2009; 467(2):572-
7. doi: 10.1007/s11999-008-0605-9.
8. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC. 
Treatment of posttraumatic bone defects by the induced 
membrane technique. Orthop Traumatol Surg Res. 2012; 
98(1):97-102. doi: 10.1016/j.otsr.2011.11.001.
9. Masquelet AC, Begue T. The concept of induced membrane 
for reconstruction of long bone defects. Orthop Clin North 
Am. 2010; 41(1):27-37. doi: 10.1016/j.ocl.2009.07.011.
10. Enneking WF, Spanier SS, Goodman MA. A system for the 
surgical staging of musculoskeletal sarcoma. Clin Orthop 
Relat Res. 1980; 153:106-20.
11. Whelan DB, Bhandari M, McKee MD, et al. Interobserver and 
intraobserver variation in the assessment of the healing of 
tibial fractures after intramedullary fixation. J Bone Joint Surg Br. 2002; 84(1):15-8. doi: 10.1302/0301-620x.84b1.11347.
12. Fitoussi F, Ilharreborde B. Is the induced-membrane 
technique successful for limb reconstruction after resecting 
large bone tumors in children? Clin Orthop Relat Res2015; 
473(6):2067-75. doi: 10.1007/s11999-015-4164-6.
13. Masquelet AC, Fitoussi F, Begue T, Muller GP. [Reconstruction 
of the long bones by the induced membrane and spongy 
autograft]. Ann Chir Plast Esthet. 2000; 45(3):346-53.
14. Hornicek FJ, Gebhardt MC, Tomford WW, et al. Factors 
affecting nonunion of the allograft-host junction. Clin Orthop 
Relat Res.2001; 382:87-98. doi: 10.1097/00003086-
200101000-00014.
15. Villemagne T, Bonnard C, Accadbled F, L'Kaissi M, de Billy B, 
de Gauzy JS. Intercalary segmental reconstruction of long 
bones after malignant bone tumor resection using primary 
methyl methacrylate cement spacer interposition and 
secondary bone grafting: the induced membrane technique. J 
Pediatr Orthop 2011; 31(5):570-6. doi: 
10.1097/BPO.0b013e31821ffa82.
16. Chotel F, Nguiabanda L, Braillon P, Kohler R, Bérard J, AbelinGenevois K. Induced membrane technique for reconstruction 
after bone tumor resection in children: a preliminary study. 
Orthop Traumatol Surg Res. 2012; 98(3):301-8. doi: 
10.1016/j.otsr.2011.11.008.
17. Auregan JC, Begue T, Rigoulot G, Glorion C, Pannier S. Success 
rate and risk factors of failure of the induced membrane 
technique in children: a systematic review. Injury. 2016; 
47:S62-7. doi: 10.1016/S0020-1383(16)30841-5.
18. Gouron R, Deroussen F, Plancq MC, Collet LM. Bone defect 
reconstruction in children using the induced membrane 
technique: a series of 14 cases. Orthop Traumatol Surg Res. 
2013; 99(7):837-43. doi: 10.1016/j.otsr.2013.05.005.
19. Gouron R. Surgical technique and indications of the induced 
membrane procedure in children. Orthop Traumatol Surg 
Res. 2016; 102(1):S133-9. doi: 10.1016/j.otsr.2015.06.027.
20. Dick HM, Strauch RJ. Infection of massive bone allografts. Clin 
Orthop Relat Res. 1994; (306):46-53.
21. Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, 
Tomford WW. Long-term results of allograft replacement in 
the management of bone tumors. Clin Orthop Relat Res. 1996; 
324:86-97. doi: 10.1097/00003086-199603000-00011.
22. Donati D, Di Liddo M, Zavatta M, et al. Massive bone allograft 
reconstruction in high-grade osteosarcoma. Clin Orthop Relat 
Res. 2000; 377:186-94. doi: 10.1097/00003086-200008000-
00025.
23. Eward WC, Kontogeorgakos V, Levin LS, Brigman BE. Free 
vascularized fibular graft reconstruction of large skeletal 
defects after tumor resection. Clin Orthop Relat Res. 2010; 
468(2):590-8. doi: 10.1007/s11999-009-1053-x.
24. Minami A, Kasashima T, Iwasaki N, Kato H, Kaneda K. 
Vascularised fibular grafts: an experience of 102 patients. J 
Bone Joint Surg Br. 2000; 82(7):1022-5. doi: 10.1302/0301-
620x.82b7.10332.
25. Careri S, Vitiello R, Oliva MS, Ziranu A, Maccauro G, Perisano 
C. Masquelet technique and osteomyelitis: innovations and 
literature review. Eur Rev Med Pharmacol Sci. 2019; 
23(Supplement 2):210-6. doi: 
10.26355/eurrev_201904_17495.
26. Accadbled F, Mazeau P, Chotel F, Cottalorda J, de Gauzy JS, 
Kohler R. Induced-membrane femur reconstruction after 
resection of bone malignancies: three cases of massive graft 
resorption in children. Orthop Traumatol Surg Res. 2013; 
99(4):479-83. doi: 10.1016/j.otsr.2013.01.008.
27. Mansour TM, Ghanem IB. Preliminary results of the induced 
membrane technique for the reconstruction of large bone 
defects. J Pediatr Orthop. 2017; 37(1):e67-74. doi: 
10.1097/BPO.0000000000000663.
28. Schöttle PB, Werner CM, Dumont CE. Two-stage 
reconstruction with free vascularized soft tissue transfer and 
conventional bone graft for infected nonunions of the tibia: 6 
patients followed for 1.5 to 5 years. Acta Orthop 2005; 
76(6):878-83. doi: 10.1080/17453670510045534.
29. Apard T, Bigorre N, Cronier P, Duteille F, Bizot P, Massin P. 
Two-stage reconstruction of post-traumatic segmental tibia 
bone loss with nailing. Orthop Traumatol Surg Res. 2010; 
96(5):549-53. doi: 10.1016/j.otsr.2010.02.010.
30. El-Alfy BS, Ali AM. Management of segmental skeletal defects 
by the induced membrane technique. Indian J Orthop. 2015; 
49:643-8. doi: 10.4103/0019-5413.168757