Orthopedic surgeons commonly perform corticosteroid injections. These injections have systemic side effects, including suppression of the hypothalamic-pituitary adrenal axis. Due to this suppression, there is a theoretical risk of corticosteroid injections affecting the efficacy of the novel COVID-19 vaccines. This potential interaction led the American Academy of Orthopedic Surgeons to recommend, “avoiding musculoskeletal corticosteroid injections for two weeks before and one week after COVID vaccine administration.” This review examines the literature underlying this recommendation. An extensive literature review was performed through PubMed, MEDLINE, and Google Scholar from database inception to May 2022. Keywords searched were COVID, coronavirus, vaccine, vaccination, steroids, and corticosteroids. Search results included articles written in the English language and encompassed reviews, case series, empirical studies, and basic science articles. There is no definitive evidence that corticosteroid injections affect COVID-19 vaccine efficacy or increase the risk of contracting COVID. The authors recommend orthopedic surgeons follow the AAOS guidelines, which recommend avoiding injections two weeks before and one week following COVID vaccine administration. Additional research is needed to better define this theoretical risk, especially since there is good evidence that injections suppress the hypothalamic-pituitary-adrenal-axis. Level of evidence: IV
Cole BJ, Schumacher HR. Injectable corticosteroids in modern practice. J Am Acad Orthop Surg. 2005; 13(1):37-46. doi:10.5435/00124635-200501000-00006. 2. Habib GS, Miari W. The effect of intra-articular triamcinolone preparations on blood glucose levels in diabetic patients: a controlled study. J Clin Rheumatol. 2011; 17(6):302-305. doi:10.1097/RHU.0b013e31822acd7c. 3. Habib G, Safia A. The effect of intra-articular injection of betamethasone acetate/betamethasone sodium phosphate on blood glucose levels in controlled diabetic patients with symptomatic osteoarthritis of the knee. Clin Rheumatol. 2009; 28(1):85-87. doi:10.1007/s10067-008-1023-9. 4. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 384(5):403-416. doi:10.1056/NEJMoa2035389. 5. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N Engl J Med. 2020; 383(27):2603-2615. doi:10.1056/NEJMoa2034577. 6. CDC. COVID Data Tracker. Centers for Disease Control and Prevention. Available at: https://COVID.cdc.gov/COVID-datatracker/#datatracker-home. Accessed March 28, 2020. 7. Agha M, Blake M, Chilleo C, Wells A, Haidar G. Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients. MedRxiv. 2021; 2021.04.06.21254949. doi:10.1101/2021.04.06.21254949. 8. Boyarsky BJ, Werbel WA, Avery RK, et al. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. JAMA. 2021; 325(17):1784- 1786. doi:10.1001/jama.2021.4385. 9. Caillard S, Chavarot N, Bertrand D, et al. Occurrence of severe COVID-19 in vaccinated transplant patients. Kidney Int. 2021; 100(2):477-479. doi:10.1016/j.kint.2021.05.011. 10. Shroff RT, Chalasani P, Wei R, et al. Immune Responses to COVID-19 mRNA Vaccines in Patients with Solid Tumors on Active, Immunosuppressive Cancer Therapy. MedRxiv. 2021:2021.05.13.21257129. doi:10.1101/2021.05.13.21257129. 11. Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021; 137(23):3165-3173. doi:10.1182/blood.2021011568. 12. Powelson I, Kaufmann RA, Chida NM, Shores JT. A New Consideration for Corticosteroid Injections: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/COVID19) Vaccination. J Hand Surg Am. 2022; 47(1):79-83. doi:10.1016/j.jhsa.2021.07.002. 13. Chaplin DD. Overview of the Immune Response. J Allergy Clin Immunol. 2010; 125(2 Suppl 2):S3-23. doi:10.1016/j.jaci.2009.12.980. 14. Wodi AP, Morelli V. Principles of Vaccination.in: Epidemiology and Prevention of Vaccine-Preventable Diseases. 14th ed.CDC.Centers for Disease Control and Preventation.2021. 15. Al-Kassmy J, Pedersen J, Kobinger G. Vaccine Candidates against Coronavirus Infections. Where Does COVID-19 Stand? Viruses. 2020; 12(8):E861. doi:10.3390/v12080861. 16. Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety. Infect Drug Resist. 2021; 14:3459-3476. doi:10.2147/IDR.S315727. 17. Wernecke C, Braun HJ, Dragoo JL. The Effect of Intra-articular Corticosteroids on Articular Cartilage. Orthop J Sports Med. 2015; 3(5):2325967115581163. doi:10.1177/2325967115581163. 18. Jüni P, Hari R, Rutjes AW, et al. Intra‐articular corticosteroid for knee osteoarthritis. Cochrane Database of Systematic Reviews. 2015; 2015(10):CD005328. doi:10.1002/14651858.CD005328.pub3. 19. Choudhry MN, Malik RA, Charalambous CP. Blood Glucose Levels Following Intra-Articular Steroid Injections in Patients with Diabetes: A Systematic Review. JBJS Rev. 2016; 4(3):e5. doi:10.2106/JBJS.RVW.O.00029. 20. Cancienne JM, Werner BC, Luetkemeyer LM, Browne JA. Does Timing of Previous Intra-Articular Steroid Injection Affect the Post-Operative Rate of Infection in Total Knee Arthroplasty? J Arthroplasty. 2015; 30(11):1879-1882. doi:10.1016/j.arth.2015.05.027. 21. Werner BC, Cancienne JM, Browne JA. The Timing of Total Hip Arthroplasty After Intraarticular Hip Injection Affects Postoperative Infection Risk. J Arthroplasty. 2016; 31(4):820- 823. doi:10.1016/j.arth.2015.08.032. 22. Younes AK, Younes NK. Recovery of steroid induced adrenal insufficiency. Transl Pediatr. 2017; 6(4):269-273. doi:10.21037/tp.2017.10.01.23. Johnston PC, Lansang MC, Chatterjee S, Kennedy L. Intraarticular glucocorticoid injections and their effect on hypothalamic-pituitary-adrenal (HPA)-axis function. Endocrine. 2015; 48(2):410-416. doi:10.1007/s12020-014- 0409-5. 24. Pearce BD, Biron CA, Miller AH. Neuroendocrine-immune interactions during viral infections. Adv Virus Res. 2001; 56:469-513. doi:10.1016/s0065-3527(01)56036-4. 25. Bailey M, Engler H, Hunzeker J, Sheridan JF. The hypothalamic-pituitary-adrenal axis and viral infection. Viral Immunol. 2003; 16(2):141-157. doi:10.1089/088282403322017884. 26. Padgett DA, Loria RM, Sheridan JF. Steroid hormone regulation of antiviral immunity. Ann N Y Acad Sci. 2000; 917:935-943. doi:10.1111/j.1749-6632.2000.tb05459.x. 27. Regan P, Elkhalifa S, Barratt P. The systemic Immunosuppressive effects of peripheral corticosteroid injections: A narrative review of the evidence in the context of COVID-19. Musculoskeletal Care. 2022; 20(3):431-441. doi:10.1002/msc.1603. 28. Bird HA, Ring EF, Bacon PA. A thermographic and clinical comparison of three intra-articular steroid preparations in rheumatoid arthritis. Ann Rheum Dis. 1979; 38(1):36-39. doi:10.1136/ard.38.1.36. 29. Armstrong RD, English J, Gibson T, Chakraborty J, Marks V. Serum methylprednisolone levels following intra-articular injection of methylprednisolone acetate. Ann Rheum Dis. 1981; 40(6):571-574. doi:10.1136/ard.40.6.571. 30. Esselinckx W, Kolanowski J, Nagant de Deuxchaisnes C. Adrenocortical function and responsiveness to tetracosactrin infusions after intra-articular treatment with triamcinolone acetonide and hydrocortisone acetate. Clin Rheumatol. 1982; 1(3):176-184. doi:10.1007/BF02042771. 31. Derendorf H, Möllmann H, Grüner A, Haack D, Gyselby G. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin Pharmacol Ther. 1986; 39(3):313-317. doi:10.1038/clpt.1986.45. 32. Lazarevic MB, Skosey JL, Djordjevic-Denic G, Swedler WI, Zgradic I, Myones BL. Reduction of cortisol levels after single intra-articular and intramuscular steroid injection. Am J Med. 1995; 99(4):370-373. doi:10.1016/s0002-9343(99)80183-1. 33. Furtado RNV, Oliveira LM, Natour J. Polyarticular corticosteroid injection versus systemic administration in treatment of rheumatoid arthritis patients: a randomized controlled study. J Rheumatol. 2005; 32(9):1691-1698. 34. Mader R, Lavi I, Luboshitzky R. Evaluation of the pituitaryadrenal axis function following single intraarticular injection of methylprednisolone. Arthritis Rheum. 2005; 52(3):924- 928. doi:10.1002/art.20884. 35. Weitoft T, Rönnblom L. Glucocorticoid resorption and influence on the hypothalamic-pituitary-adrenal axis after intra-articular treatment of the knee in resting and mobile patients. Ann Rheum Dis. 2006; 65(7):955-957. doi:10.1136/ard.2005.041525. 36. Duclos M, Guinot M, Colsy M, et al. High risk of adrenal insufficiency after a single articular steroid injection in athletes. Med Sci Sports Exerc. 2007; 39(7):1036-1043. doi:10.1249/mss.0b013e31805468d6 37. Habib G, Jabbour A, Salman J, Hakim G, Haddad H. The effect of epidural methylprednisolone acetate injection on the hypothalamic-pituitary-adrenal axis. J Clin Anesth. 2013; 25(8):629-633. doi:10.1016/j.jclinane.2013.07.002 38. Habib G, Jabbour A, Artul S, Hakim G. Intra-articular methylprednisolone acetate injection at the knee joint and the hypothalamic-pituitary-adrenal axis: a randomized controlled study. Clin Rheumatol. 2014; 33(1):99-103. doi:10.1007/s10067-013-2374-4. 39. Habib G, Khazin F, Jabbour A, et al. Simultaneous bilateral knee injection of methylprednisolone acetate and the hypothalamic-pituitary adrenal axis: a single-blind casecontrol study. J Investig Med. 2014; 62(3):621-626. doi:10.2310/JIM.0000000000000048. 40. Sytsma TT, Greenlund LK, Greenlund LS. Joint Corticosteroid Injection Associated With Increased Influenza Risk. Mayo Clin Proc Innov Qual Outcomes. 2018; 2(2):194-198. doi:10.1016/j.mayocpiqo.2018.01.005. 41. de Roux A, Marx A, Burkhardt O, et al. Impact of corticosteroids on the immune response to a MF59- adjuvanted influenza vaccine in elderly COPD-patients. Vaccine. 2006; 24(10):1537-1542. doi:10.1016/j.vaccine.2005.10.007. 42. Inoue S, Shibata Y, Takabatake N, Igarashi A, Abe S, Kubota I. Influence of corticosteroid therapy on the serum antibody response to influenza vaccine in elderly patients with chronic pulmonary diseases. EXCLI J. 2013; 12:760-765. 43. Steentoft J, Konradsen HB, Hilskov J, Gislason G, Andersen JR. Response to pneumococcal vaccine in chronic obstructive lung disease--the effect of ongoing, systemic steroid treatment. Vaccine. 2006; 24(9):1408-1412. doi:10.1016/j.vaccine.2005.09.020. 44. Lahood N, Emerson SS, Kumar P, Sorensen RU. Antibody levels and response to pneumococcal vaccine in steroiddependent asthma. Ann Allergy. 1993; 70(4):289-294. 45. Hanania NA, Sockrider M, Castro M, et al. Immune response to influenza vaccination in children and adults with asthma: effect of corticosteroid therapy. J Allergy Clin Immunol. 2004; 113(4):717-724. doi:10.1016/j.jaci.2003.12.584. 46. McKean D, Chung SL, Fairhead R, et al. Corticosteroid injections during the COVID-19 pandemic: experience from a UK centre. Bone Jt Open. 2020; 1(9):605-611. doi:10.1302/2633-1462.19.BJO-2020-0130.R1. 47. Timing of Musculoskeletal Cortisone Injections and COVID Vaccine Administration - AAOS. Available at: https://www.aaos.org/about/COVID-19-information-forour-members/guidance-for-elective-surgery/timing-ofmusculoskeletal-cortisone-injections-and-COVID-vaccineadministration/. Accessed February 17, 2022. 48. Interim Clinical Considerations for Use of COVID-19 Vaccines | CDC. Available at: https://www.cdc.gov/vaccines/COVID19/clinical-considerations/COVID-19-vaccines-us.html. Accessed February 17, 2022. 49. ACIP General Best Practice Guidelines for Immunization | CDC. Available at: https://www.cdc.gov/vaccines/hcp/aciprecs/general-recs/index.html. Accessed February 17, 2022. 50. Corticosteroid Injections and mRNA COVID-19 Vaccines - Spine Intervention Society. Available at: https://www.spineintervention.org/news/551084/Corticost eroid-Injections-and-COVID-19-Vaccines.htm. Accessed February 17, 2022. 51. COVID-19 ASIPP Updates. American Society of Interventional Pain Physicians. Available at: https://asipp.org/COVID-19- asipp-updates/. Accessed February 17, 2022. 52. Chakravarthy K, Strand N, Frosch A, et al. Recommendations and Guidance for Steroid Injection Therapy and COVID-19 Vaccine Administration from the American Society of Pain and Neuroscience (ASPN). J Pain Res. 2021; 14:623-629. doi:10.2147/JPR.S302115
Kreulen, R. .. T., Margalit, A., Miller, A., Srikumaran, U., Wilckens, J., & LaPorte, D. (2023). The Effect of Intra-articular Corticosteroid Injections on Vaccine Efficacy: A Current Concepts Review. The Archives of Bone and Joint Surgery, 11(5), 306-312. doi: 10.22038/abjs.2023.68418.3263
MLA
R . Timothy Kreulen; Adam Margalit; Andrew S. Miller; Uma Srikumaran; John H. Wilckens; Dawn LaPorte. "The Effect of Intra-articular Corticosteroid Injections on Vaccine Efficacy: A Current Concepts Review", The Archives of Bone and Joint Surgery, 11, 5, 2023, 306-312. doi: 10.22038/abjs.2023.68418.3263
HARVARD
Kreulen, R. .. T., Margalit, A., Miller, A., Srikumaran, U., Wilckens, J., LaPorte, D. (2023). 'The Effect of Intra-articular Corticosteroid Injections on Vaccine Efficacy: A Current Concepts Review', The Archives of Bone and Joint Surgery, 11(5), pp. 306-312. doi: 10.22038/abjs.2023.68418.3263
VANCOUVER
Kreulen, R. .. T., Margalit, A., Miller, A., Srikumaran, U., Wilckens, J., LaPorte, D. The Effect of Intra-articular Corticosteroid Injections on Vaccine Efficacy: A Current Concepts Review. The Archives of Bone and Joint Surgery, 2023; 11(5): 306-312. doi: 10.22038/abjs.2023.68418.3263