The Effect of Intra-articular Corticosteroid Injections on Vaccine Efficacy: A Current Concepts Review



Department of Orthopedic Surgery, the Johns Hopkins University School of Medicine, Baltimore, USA


Orthopedic surgeons commonly perform corticosteroid injections. These injections have systemic side 
effects, including suppression of the hypothalamic-pituitary adrenal axis. Due to this suppression, there 
is a theoretical risk of corticosteroid injections affecting the efficacy of the novel COVID-19 vaccines. 
This potential interaction led the American Academy of Orthopedic Surgeons to recommend, “avoiding 
musculoskeletal corticosteroid injections for two weeks before and one week after COVID vaccine 
administration.” This review examines the literature underlying this recommendation. An extensive 
literature review was performed through PubMed, MEDLINE, and Google Scholar from database 
inception to May 2022. Keywords searched were COVID, coronavirus, vaccine, vaccination, steroids, 
and corticosteroids. Search results included articles written in the English language and encompassed 
reviews, case series, empirical studies, and basic science articles. There is no definitive evidence that 
corticosteroid injections affect COVID-19 vaccine efficacy or increase the risk of contracting COVID. 
The authors recommend orthopedic surgeons follow the AAOS guidelines, which recommend avoiding 
injections two weeks before and one week following COVID vaccine administration. Additional research 
is needed to better define this theoretical risk, especially since there is good evidence that injections 
suppress the hypothalamic-pituitary-adrenal-axis.
 Level of evidence: IV


Main Subjects

  1. Cole BJ, Schumacher HR. Injectable corticosteroids in modern 
    practice. J Am Acad Orthop Surg. 2005; 13(1):37-46. 
    2. Habib GS, Miari W. The effect of intra-articular triamcinolone 
    preparations on blood glucose levels in diabetic patients: a 
    controlled study. J Clin Rheumatol. 2011; 17(6):302-305. 
    3. Habib G, Safia A. The effect of intra-articular injection of 
    betamethasone acetate/betamethasone sodium phosphate 
    on blood glucose levels in controlled diabetic patients with 
    symptomatic osteoarthritis of the knee. Clin Rheumatol. 
    2009; 28(1):85-87. doi:10.1007/s10067-008-1023-9.
    4. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of 
    the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 
    384(5):403-416. doi:10.1056/NEJMoa2035389.
    5. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of 
    the BNT162b2 mRNA COVID-19 Vaccine. N Engl J Med. 2020; 
    383(27):2603-2615. doi:10.1056/NEJMoa2034577.
    6. CDC. COVID Data Tracker. Centers for Disease Control and 
    Prevention. Available at: Accessed March 28, 2020.
    7. Agha M, Blake M, Chilleo C, Wells A, Haidar G. Suboptimal 
    response to COVID-19 mRNA vaccines in hematologic 
    malignancies patients. MedRxiv. 2021; 2021.04.06.21254949. 
    8. Boyarsky BJ, Werbel WA, Avery RK, et al. Immunogenicity of a 
    Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid 
    Organ Transplant Recipients. JAMA. 2021; 325(17):1784-
    1786. doi:10.1001/jama.2021.4385.
    9. Caillard S, Chavarot N, Bertrand D, et al. Occurrence of severe 
    COVID-19 in vaccinated transplant patients. Kidney Int. 2021; 
    100(2):477-479. doi:10.1016/j.kint.2021.05.011.
    10. Shroff RT, Chalasani P, Wei R, et al. Immune Responses to 
    COVID-19 mRNA Vaccines in Patients with Solid Tumors on 
    Active, Immunosuppressive Cancer Therapy. MedRxiv. 
    11. Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 
    mRNA COVID-19 vaccine in patients with chronic 
    lymphocytic leukemia. Blood. 2021; 137(23):3165-3173. 
    12. Powelson I, Kaufmann RA, Chida NM, Shores JT. A New 
    Consideration for Corticosteroid Injections: Severe Acute 
    Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/COVID19) Vaccination. J Hand Surg Am. 2022; 47(1):79-83. 
    13. Chaplin DD. Overview of the Immune Response. J Allergy Clin 
    Immunol. 2010; 125(2 Suppl 2):S3-23. 
    14. Wodi AP, Morelli V. Principles of 
    Epidemiology and Prevention of Vaccine-Preventable 
    Diseases. 14th ed.CDC.Centers for Disease Control and 
    15. Al-Kassmy J, Pedersen J, Kobinger G. Vaccine Candidates 
    against Coronavirus Infections. Where Does COVID-19 Stand? 
    Viruses. 2020; 12(8):E861. doi:10.3390/v12080861.
    16. Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview 
    of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, 
    Efficacy and Safety. Infect Drug Resist. 2021; 14:3459-3476. 
    17. Wernecke C, Braun HJ, Dragoo JL. The Effect of Intra-articular 
    Corticosteroids on Articular Cartilage. Orthop J Sports Med. 
    2015; 3(5):2325967115581163. 
    18. Jüni P, Hari R, Rutjes AW, et al. Intra‐articular corticosteroid 
    for knee osteoarthritis. Cochrane Database of Systematic 
    Reviews. 2015; 2015(10):CD005328. 
    19. Choudhry MN, Malik RA, Charalambous CP. Blood Glucose 
    Levels Following Intra-Articular Steroid Injections in Patients 
    with Diabetes: A Systematic Review. JBJS Rev. 2016; 4(3):e5. 
    20. Cancienne JM, Werner BC, Luetkemeyer LM, Browne JA. Does 
    Timing of Previous Intra-Articular Steroid Injection Affect the 
    Post-Operative Rate of Infection in Total Knee Arthroplasty? J 
    Arthroplasty. 2015; 30(11):1879-1882. 
    21. Werner BC, Cancienne JM, Browne JA. The Timing of Total Hip 
    Arthroplasty After Intraarticular Hip Injection Affects 
    Postoperative Infection Risk. J Arthroplasty. 2016; 31(4):820-
    823. doi:10.1016/j.arth.2015.08.032.
    22. Younes AK, Younes NK. Recovery of steroid induced adrenal 
    insufficiency. Transl Pediatr. 2017; 6(4):269-273. 
    doi:10.21037/tp.2017.10.01.23. Johnston PC, Lansang MC, Chatterjee S, Kennedy L. Intraarticular glucocorticoid injections and their effect on 
    hypothalamic-pituitary-adrenal (HPA)-axis function. 
    Endocrine. 2015; 48(2):410-416. doi:10.1007/s12020-014-
    24. Pearce BD, Biron CA, Miller AH. Neuroendocrine-immune 
    interactions during viral infections. Adv Virus Res. 2001; 
    56:469-513. doi:10.1016/s0065-3527(01)56036-4.
    25. Bailey M, Engler H, Hunzeker J, Sheridan JF. The 
    hypothalamic-pituitary-adrenal axis and viral infection. Viral 
    Immunol. 2003; 16(2):141-157. 
    26. Padgett DA, Loria RM, Sheridan JF. Steroid hormone 
    regulation of antiviral immunity. Ann N Y Acad Sci. 2000; 
    917:935-943. doi:10.1111/j.1749-6632.2000.tb05459.x.
    27. Regan P, Elkhalifa S, Barratt P. The systemic 
    Immunosuppressive effects of peripheral corticosteroid 
    injections: A narrative review of the evidence in the context of 
    COVID-19. Musculoskeletal Care. 2022; 20(3):431-441. 
    28. Bird HA, Ring EF, Bacon PA. A thermographic and clinical 
    comparison of three intra-articular steroid preparations in 
    rheumatoid arthritis. Ann Rheum Dis. 1979; 38(1):36-39. 
    29. Armstrong RD, English J, Gibson T, Chakraborty J, Marks V. 
    Serum methylprednisolone levels following intra-articular 
    injection of methylprednisolone acetate. Ann Rheum Dis. 
    1981; 40(6):571-574. doi:10.1136/ard.40.6.571.
    30. Esselinckx W, Kolanowski J, Nagant de Deuxchaisnes C. 
    Adrenocortical function and responsiveness to tetracosactrin 
    infusions after intra-articular treatment with triamcinolone 
    acetonide and hydrocortisone acetate. Clin Rheumatol. 1982; 
    1(3):176-184. doi:10.1007/BF02042771.
    31. Derendorf H, Möllmann H, Grüner A, Haack D, Gyselby G. 
    Pharmacokinetics and pharmacodynamics of glucocorticoid 
    suspensions after intra-articular administration. Clin 
    Pharmacol Ther. 1986; 39(3):313-317. 
    32. Lazarevic MB, Skosey JL, Djordjevic-Denic G, Swedler WI, 
    Zgradic I, Myones BL. Reduction of cortisol levels after single 
    intra-articular and intramuscular steroid injection. Am J Med. 
    1995; 99(4):370-373. doi:10.1016/s0002-9343(99)80183-1.
    33. Furtado RNV, Oliveira LM, Natour J. Polyarticular 
    corticosteroid injection versus systemic administration in 
    treatment of rheumatoid arthritis patients: a randomized 
    controlled study. J Rheumatol. 2005; 32(9):1691-1698.
    34. Mader R, Lavi I, Luboshitzky R. Evaluation of the pituitaryadrenal axis function following single intraarticular injection 
    of methylprednisolone. Arthritis Rheum. 2005; 52(3):924-
    928. doi:10.1002/art.20884.
    35. Weitoft T, Rönnblom L. Glucocorticoid resorption and 
    influence on the hypothalamic-pituitary-adrenal axis after 
    intra-articular treatment of the knee in resting and mobile 
    patients. Ann Rheum Dis. 2006; 65(7):955-957. 
    36. Duclos M, Guinot M, Colsy M, et al. High risk of adrenal 
    insufficiency after a single articular steroid injection in 
    athletes. Med Sci Sports Exerc. 2007; 39(7):1036-1043. 
    37. Habib G, Jabbour A, Salman J, Hakim G, Haddad H. The effect 
    of epidural methylprednisolone acetate injection on the 
    hypothalamic-pituitary-adrenal axis. J Clin Anesth. 2013; 
    25(8):629-633. doi:10.1016/j.jclinane.2013.07.002
    38. Habib G, Jabbour A, Artul S, Hakim G. Intra-articular 
    methylprednisolone acetate injection at the knee joint and 
    the hypothalamic-pituitary-adrenal axis: a randomized 
    controlled study. Clin Rheumatol. 2014; 33(1):99-103. 
    39. Habib G, Khazin F, Jabbour A, et al. Simultaneous bilateral 
    knee injection of methylprednisolone acetate and the 
    hypothalamic-pituitary adrenal axis: a single-blind casecontrol study. J Investig Med. 2014; 62(3):621-626. 
    40. Sytsma TT, Greenlund LK, Greenlund LS. Joint Corticosteroid 
    Injection Associated With Increased Influenza Risk. Mayo Clin 
    Proc Innov Qual Outcomes. 2018; 2(2):194-198. 
    41. de Roux A, Marx A, Burkhardt O, et al. Impact of 
    corticosteroids on the immune response to a MF59-
    adjuvanted influenza vaccine in elderly COPD-patients. 
    Vaccine. 2006; 24(10):1537-1542. 
    42. Inoue S, Shibata Y, Takabatake N, Igarashi A, Abe S, Kubota I. 
    Influence of corticosteroid therapy on the serum antibody 
    response to influenza vaccine in elderly patients with chronic 
    pulmonary diseases. EXCLI J. 2013; 12:760-765.
    43. Steentoft J, Konradsen HB, Hilskov J, Gislason G, Andersen JR. 
    Response to pneumococcal vaccine in chronic obstructive 
    lung disease--the effect of ongoing, systemic steroid 
    treatment. Vaccine. 2006; 24(9):1408-1412. 
    44. Lahood N, Emerson SS, Kumar P, Sorensen RU. Antibody 
    levels and response to pneumococcal vaccine in steroiddependent asthma. Ann Allergy. 1993; 70(4):289-294.
    45. Hanania NA, Sockrider M, Castro M, et al. Immune response to 
    influenza vaccination in children and adults with asthma: 
    effect of corticosteroid therapy. J Allergy Clin Immunol. 2004; 
    113(4):717-724. doi:10.1016/j.jaci.2003.12.584.
    46. McKean D, Chung SL, Fairhead R, et al. Corticosteroid 
    injections during the COVID-19 pandemic: experience from a 
    UK centre. Bone Jt Open. 2020; 1(9):605-611. 
    47. Timing of Musculoskeletal Cortisone Injections and COVID
    Vaccine Administration - AAOS. Available at: Accessed February 17, 2022.
    48. Interim Clinical Considerations for Use of COVID-19 Vaccines 
    | CDC. Available at: 
    Accessed February 17, 2022.
    49. ACIP General Best Practice Guidelines for Immunization | 
    CDC. Available at: Accessed February 17, 2022.
    50. Corticosteroid Injections and mRNA COVID-19 Vaccines -
    Spine Intervention Society. Available at: eroid-Injections-and-COVID-19-Vaccines.htm. Accessed 
    February 17, 2022. 
    51. COVID-19 ASIPP Updates. American Society of Interventional 
    Pain Physicians. Available at:
    asipp-updates/. Accessed February 17, 2022. 
    52. Chakravarthy K, Strand N, Frosch A, et al. Recommendations 
    and Guidance for Steroid Injection Therapy and COVID-19 
    Vaccine Administration from the American Society of Pain 
    and Neuroscience (ASPN). J Pain Res. 2021; 14:623-629.