1. Schlösser TP, Colo D, Castelein RM. Etiology and pathogenesis
of adolescent idiopathic scoliosis. Elsevier; 2015:2-8.
doi:https://doi.org/10.1053/j.semss.2015.01.003
2. Zhao T, Li Y, Dai Z, et al. Bibliometric Analysis of the Scientific
Literature on Adolescent Idiopathic Scoliosis. World
Neurosurgery. 2021/04/16/ 2021; 151:e265-e277.
doi:https://doi.org/10.1016/j.wneu.2021.04.020
3. Mohamed M, Trivedi J, Davidson N, Munigangaiah S.
Adolescent idiopathic scoliosis: a review of current concepts.
Orthopaedics and Trauma. 2020/12/01/ 2020; 34(6):338-
345. doi:https://doi.org/10.1016/j.mporth.2020.09.003
4. Sharifmoradi K, Naderi A, Saljoghiyan P. The Effect of Boston
Brace on Lower Limb and L5-S1 Joint Contact Forces during
Walking in Patients with Idiopathic Scoliosis. Scientific
journal of Ilam University of medical sciences. 2017;
25(3):90-99. doi: http://dx.doi.org/10.29252/sjimu.25.3.90
5. Chung N, Cheng Y-H, Po H-L, et al. Spinal phantom
comparability study of Cobb angle measurement of scoliosis
using digital radiographic imaging. Journal of orthopaedic
translation. 2018; 15:81-90. doi:
https://doi.org/10.1016/j.jot.2018.09.005
6. Li Y, Kakar RS, Fu Y-C, et al. Postural control of individuals
with spinal fusion for adolescent idiopathic scoliosis. Clinical
Biomechanics. 2019; 61:46-51. doi:
https://doi.org/10.1016/j.clinbiomech.2018.11.001
7. Luković V, Ćuković S, Milošević D, Devedžić G. An ontologybased module of the information system ScolioMedIS for 3D
digital diagnosis of adolescent scoliosis. Computer Methods
and Programs in Biomedicine. 2019/09/01/ 2019;178:247-
263. doi:https://doi.org/10.1016/j.cmpb.2019.06.027
8. Salmingo RA, Tadano S, Fujisaki K, Abe Y, Ito M. Relationship
of forces acting on implant rods and degree of scoliosis
correction. Clinical biomechanics. 2013; 28(2):122-128. doi:
https://doi.org/10.1016/j.clinbiomech.2012.12.001
9. Wang W, Baran GR, Betz RR, Samdani AF, Pahys JM, Cahill PJ.
The use of finite element models to assist understanding and
treatment for scoliosis: a review paper. Spine Deformity.
2014; 2(1):10-27. doi:
https://doi.org/10.1016/j.jspd.2013.09.007
10. Cho SK, Caridi J, Kim JS, Cheung ZB, Gandhi A, Inzana J.
Attenuation of Proximal Junctional Kyphosis Using
Sublaminar Polyester Tension Bands: A Biomechanical Study.
World neurosurgery. 2018; 120:e1136-e1142. doi:
https://doi.org/10.1016/j.wneu.2018.08.244
11. Le Navéaux F, Aubin C-E, Parent S, Newton PO, Labelle H. 3D
rod shape changes in adolescent idiopathic scoliosis
instrumentation: how much does it impact correction?
European Spine Journal. 2017; 26(6):1676-1683. doi:
https://doi.org/10.1007/s00586-017-4958-1
12. Lavelle WF, Moldavsky M, Cai Y, Ordway NR, Bucklen BS. An
initial biomechanical investigation of fusionless anterior
tether constructs for controlled scoliosis correction. The
Spine Journal. 2016; 16(3):408-413. doi:
https://doi.org/10.1016/j.spinee.2015.11.004
13. Fairhurst H, Little JP, Adam CJ. Intra-operative measurement
of applied forces during anterior scoliosis correction. Clinical
Biomechanics. 2016; 40:68-73. doi:
https://doi.org/10.1016/j.clinbiomech.2016.10.014
14. Reutlinger C, Hasler C, Scheffler K, Büchler P. Intraoperative
determination of the load–displacement behavior of scoliotic
spinal motion segments: preliminary clinical results.
European spine journal. 2012; 21(6):860-867. doi:
https://doi.org/10.1007/s00586-012-2164-8
15. Roth AK, Beheshtiha AS, van der Meer R, et al. Validation of a
finite element model of the thoracolumbar spine to study
instrumentation level variations in early onset scoliosis
correction. Journal of the Mechanical Behavior of Biomedical
Materials. 2021/05/01/ 2021; 117:104360.
doi:https://doi.org/10.1016/j.jmbbm.2021.104360
16. Clin J, Le Navéaux F, Driscoll M, et al. Biomechanical
Comparison of the Load-Sharing Capacity of High and Low
Implant Density Constructs With Three Types of Pedicle
Screws for the Instrumentation of Adolescent Idiopathic
Scoliosis. Spine deformity. 2019; 7(1):2-10. doi:
https://doi.org/10.1016/j.jspd.2018.06.007
17. Wang X, Boyer L, Le Naveaux F, Schwend RM, Aubin C-E. How
does differential rod contouring contribute to 3-dimensional
correction and affect the bone-screw forces in adolescent
idiopathic scoliosis instrumentation? Clinical Biomechanics.
2016; 39:115-121. doi: https://doi.org/10.1016/j.clinbiomech.2016.10.002
18. Jalalian A, Tay FE, Arastehfar S, Liu G. A patient-specific
multibody kinematic model for representation of the scoliotic
spine movement in frontal plane of the human body.
Multibody system dynamics. 2017; 39(3):197-220. doi:
https://link.springer.com/article/10.1007/s11044-016-
9556-1
19. Petit Y, Aubin C-É, Labelle H. Patient-specific mechanical
properties of a flexible multi-body model of the scoliotic
spine. Medical and Biological Engineering and Computing.
2004; 42(1):55-60. doi:
https://doi.org/10.1007/bf02351011
20 Koutras C, Pérez J, Kardash K, Otaduy MA. A study of the
sensitivity of biomechanical models of the spine for scoliosis
brace design. Computer Methods and Programs in
Biomedicine. 2021/08/01/ 2021; 207:106125.
doi:https://doi.org/10.1016/j.cmpb.2021.106125.
21. Jaremko JL, Poncet P, Ronsky J, et al. Comparison of Cobb
angles measured manually, calculated from 3-D spinal
reconstruction, and estimated from torso asymmetry.
Computer methods in biomechanics and biomedical
engineering. 2002; 5(4):277-281. doi:
https://doi.org/10.1080/10255840290032649
22. Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y. Automatic
Cobb measurement of scoliosis based on fuzzy Hough
transform with vertebral shape prior. Journal of digital
imaging. 2009; 22(5):463. doi:
https://doi.org/10.1007/s10278-008-9127-y
23. Rak M, Steffen J, Meyer A, Hansen C, Tönnies KD. Combining
convolutional neural networks and star convex cuts for fast
whole spine vertebra segmentation in MRI. Computer
Methods and Programs in Biomedicine. 2019/08/01/ 2019;
177:47-56. doi:https://doi.org/10.1016/j.cmpb.2019.05.003
24. Jaremko JL, Poncet P, Ronsky J, et al. Genetic Algorithm–
Neural Network Estimation of Cobb Angle from Torso
Asymmetry in Scoliosis. Journal of biomechanical
engineering. 2002; 124(5):496-503. doi:
https://doi.org/10.1115/1.1503375
25. Kokabu T, Kanai S, Kawakami N, et al. An algorithm for using
deep learning convolutional neural networks with three
dimensional depth sensor imaging in scoliosis detection. The
Spine Journal. 2021; 21(6):980-987. doi:
https://doi.org/10.1016/j.spinee.2021.01.022
26. Phan P, Mezghani N, Wai EK, de Guise J, Labelle H. Artificial
neural networks assessing adolescent idiopathic scoliosis:
comparison with Lenke classification. The Spine Journal.
2013; 13(11):1527-1533. doi:
https://doi.org/10.1016/j.spinee.2013.07.449
27. Tokala DP, Nelson IW, Mehta JS, Powell R, Grannum S,
Hutchinson MJ. Prediction of scoliosis curve correction using
pedicle screw constructs in AIS: A comparison of fulcrum
bend radiographs and traction radiographs under general
anesthesia. Global Spine Journal. 2018; 8(7):676-682. doi:
https://doi.org/10.1177/2192568218763147
28. Hu B, Wang L, Song Y, Yang X, Liu L, Zhou C. Postoperative
proximal junctional kyphosis correlated with thoracic inlet
angle in Lenke 5c adolescent idiopathic scoliosis patients
following posterior surgery. BMC Musculoskeletal Disorders.
2022; 23(1):1-11. doi:https://doi.org/10.1186/s12891-022-
05868-8
29. Garg B, Mehta N, Bansal T, Malhotra R. EOS® imaging:
Concept and current applications in spinal disorders. Journal
of Clinical Orthopaedics and Trauma. 2020/09/01/ 2020;
11(5):786-793.
doi:https://doi.org/10.1016/j.jcot.2020.06.012
30. Lechner R, Putzer D, Dammerer D, Liebensteiner M, Bach C,
Thaler M. Comparison of two-and three-dimensional
measurement of the Cobb angle in scoliosis. International
Orthopaedics. 2017; 41(5):957-962.
doi:https://doi.org/10.1007/s00264-016-3359-0
31. Skov ST, Li H, Hansen ES, et al. New growth rod concept
provides three dimensional correction, spinal growth, and
preserved pulmonary function in early-onset scoliosis.
International Orthopaedics. 2020; 44(9):1773-1783.
doi:https://doi.org/10.1007/s00264-020-04604-y
32 Ghandhari H, Mahabadi MA, Nikouei F, et al. The role of
spinopelvic parameters in clinical outcomes of spinal
osteotomies in patients with sagittal imbalance. Archives of
Bone and Joint Surgery. 2018; 6(4):324.
doi:http://dx.doi.org/10.22038/abjs.2017.26676.1705.