The Current Role of Disease-modifying Osteoarthritis Drugs

Document Type : CURRENT CONCEPTS REVIEW

Author

Department of Orthopaedic Surgery, La Paz University Hospital, Madrid, Spain

Abstract

Contemporary treatments for osteoarthritis (OA) pursue only to alleviate the pain caused by the illness. Discovering 
disease-modifying osteoarthritis drugs (DMOADs) that can induce the repair and regeneration of articular tissues 
would be of substantial usefulness. The purpose of this manuscript is to review the contemporary role of DMOADs 
in managing OA. A narrative literature review on the subject, exploring the Cochrane Library and PubMed 
(MEDLINE) was performed. It was encountered that many publications have analyzed the impact of several 
DMOAD methods, including anti-cytokine therapy (tanezumab, AMG 108, adalimumab, etanercept, anakinra), 
enzyme inhibitors (M6495, doxycycline, cindunistat, PG-116800), growth factors (bone morphogenetic protein-7, 
sprifermin), gene therapy (micro ribonucleic acids, antisense oligonucleotides), peptides (calcitonin) and others 
(SM04690, senolitic, transient receptor potential vanilloid 4, neural EGFL-like 1, TPCA-1, tofacitinib, lorecivivint and 
quercitrin). Tanezumab has been demonstrated to alleviate hip and knee pain in individuals with OA but can cause 
major adverse events (osteonecrosis of the knee, rapid illness progression, augmented prevalence of total joint 
arthroplasty of involved joints, particularly when tanezumab is combined with nonsteroidal anti-inflammatory drugs. 
SM04690 (a Wnt inhibitor) has been demonstrated to be safe and efficacious in alleviating pain and ameliorating 
function as measured by the Western Ontario and McMaster Universities Arthritis Index. The intraarticular injection 
of lorecivivint is deemed safe and well tolerated, with no important reported systemic complications. In conclusion, 
even though DMOADs seem promising, their clinical effectiveness has not yet been demonstrated for managing 
OA. Until forthcoming studies can proved the medications’ capacity to repair and regenerate tissues affected by OA, 
physicians should keep using treatments that only intend to alleviate pain. 
Level of evidence: III

Keywords

Main Subjects


1. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis:
an update with relevance for clinical practice. Lancet.
2011; 377(9783):2115-2126. doi: 10.1016/S0140-
6736(11)60243-2.
2. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet.
2019; 393(10182):1745-1759. doi: 10.1016/S0140-
6736(19)30417-9.
3. Falah M, Nierenberg G, Soudry M, Hayden M, Volpin
G. Treatment of articular cartilage lesions of the
knee. Int Orthop. 2010; 34(5):621-630. doi: 10.1007/
s00264-010-0959-y.
4. Ghouri A, Conaghan PG. Prospects for therapies in
osteoarthritis. Calcif Tissue Int. 2021; 109(3):339-
350. doi: 10.1007/s00223-020-00672-9.
5. Latourte A, Kloppenburg M, Richette P. Emerging
pharmaceutical therapies for osteoarthritis. Nat Rev
Rheumatol. 2020; 16(12):673-688. doi: 10.1038/
s41584-020-00518-6.
6. Rodrigues TA, Freire AO, Bonfim BF, Cartágenes
MSS, Garcí�a JBS. Strontium ranelate as a possible
disease-modifying osteoarthritis drug: a systematic
review. Braz J Med Biol Res. 2018; 51(8):e7440. doi:
10.1590/1414-431x20187440.
7. Gregori D, Giacovelli G, Minto C, et al. Association
of pharmacological treatments with long-term
pain control in patients with knee osteoarthritis:
a systematic review and meta-analysis. JAMA.
2018; 320(24):2564-2579. doi: 10.1001/jama.
2018.19319.
8. Silva KM, de Sousa FL, Alves AC, et al. Chondroprotective
effect of melatonin and strontium ranelate in animal
model of osteoarthritis. Heliyon 2021; 7(4):e06760.
doi: 10.1016/j.heliyon.2021.e06760.
9. Cai G, Aitken D, Laslett LL, et al. Effect of intravenous
zoledronic acid on tibiofemoral cartilage volume
among patients with knee osteoarthritis with
bone marrow lesions: a randomized clinical trial.
JAMA. 2020; 323(15):1456-1466. doi: 10.1001/
jama.2020.2938.
10.Vaysbrot EE, Osani MC, Musetti M-C, McAllindon
TE, Bannuru RR. Are bisphosphonates efficacious in
knee osteoarthritis? A meta-analysis of randomized
controlled trials. Osteoarthritis Cartilage. 2018;
26(2):154-164. doi: 10.1016/j.joca.2017.11.013.
11.Salman A, Shabana AI, El-Ghazouly DE, Maha E.
Protective effect of glucosamine and risedronate
(alone or in combination) against osteoarthritic
changes in rat experimental model of immobilized
knee. Anat Cell Biol. 2019; 52(4):498-510. doi:
10.5115/acb.19.050.
12.Doschak MR, Wohl GR, Hanley DA, Bray RC, Zernicke RF.
Antiresorptive therapy conserves some periarticular
bone and ligament mechanical properties after
anterior cruciate ligament disruption in the rabbit
knee. J Orthop Res. 2004; 22:942–8. doi: 10.1016/j.
orthres.2003.12.018.
13.Spector TD. Bisphosphonates: potential therapeutic
agents for disease modification in osteoarthritis.
Aging Clin Exp Res. 2003; 15:413–8. doi: 10.1007/
BF03327362.
14.Jones MD, Tran CW, Li G, Maksymowych WP, Zernicke
RF, Doschak MR. In vivo microfocal computed
tomography and micro-magnetic resonance imaging
evaluation of antiresorptive and antiinflammatory
drugs as preventive treatments of osteoarthritis in
the rat. Arthritis Rheum. 2010; 62:2726–35. doi:
10.1002/art.27595.
15.Lane NE, Schnitzer TJ, Birbara CA, et al. Tanezumab
for the treatment of pain from osteoarthritis of the
knee. N Engl J Med 2010; 363(16):1521-1531. doi:
10.1056/NEJMoa0901510.
16.Schnitzer TJ, Lane NE, Birbara C. Long-term
open-label study of tanezumab for moderate to
severe osteoarthritic knee pain. Osteoarthritis
Cartilage.2011; 19(6);639-646. doi: 10.1016/j.
joca.2011.01.009.
17.Birbara C, Dabezies EJ, JR AM, et al. Safety and efficacy
of subcutaneous tanezumab in patients with knee or
hip osteoarthritis. J Pain Res 2018; 11:151-164. doi:
10.2147/JPR.S135257.
18.Schnitzer TJ, Easton R, Pang S, et al. Effect of
Tanezumab on joint pain, physical function, and
patient global assessment of osteoarthritis among
patients with osteoarthritis of the hip or knee: a
randomized clinical trial. JAMA 2019; 322(1):37-48.
doi: 10.1001/jama.2019.8044.
19.Song GG, Lee YH. Relative efficacy and tolerability
of 2.5, 5, and 10 mg tanezumab for the treatment of
osteoarthritis: A Bayesian network meta-analysis
of randomized controlled trials based on patient
withdrawal. Int J Clin Pharmacol Ther 2021;
59(2):147-55. doi: 10.5414/CP203812. 20.Berenbaum F, Blanco FJ, Guermazi A, et al.
Subcutaneous tanezumab for osteoarthritis of the hip
or knee: efficacy and safety results from a 24-week
randomised phase III study with a 24-week followup period. Ann Rheum Dis. 2020; 79(6):800-10. doi:
10.1136/annrheumdis-2019-216296.
21.Cohen SB, Proudman S, Kivitz A, et al. A randomized,
double-blind study of AMG 108 (a fully human
monoclonal antibody to IL-1R1) in patients with
osteoarthritis of the knee. Arthrit Res Ther. 2011;
13(4):R125. doi: 10.1186/ar3430.
22.Wang J. Efficacy and safety of adalimumab by intraarticular injection for moderate to severe knee
osteoarthritis: an open-label randomized controlled
trial. J Int Med Res. 2018; 46(1):326-334. doi:
10.1177/0300060517723182.
23.Aitken D, Laslett LL, Pan F, et al. A randomised doubleblind placebo-controlled crossover trial of HUMira
(adalimumab) for erosive hand OsteoaRthritis -
the HUMOR trial. Osteoarthritis Cartilage. 2017;
26(7):880-887. doi: 10.1016/j.joca.2018.02.899.
24.Fleischmann RM, Bliddal H, Blanco FJ, et al. A phase
II trial of lutikizumab, an anti-interleukin-1 alpha/
beta dual variable domain immunoglobulin, in
knee osteoarthritis patients with synovitis. Arthrit
Rheumatol 2019; 71(7):1056-1069. doi: 10.1002/
art.40840.
25.Kloppenburg M, Peterfy C, Haugen IK, et al. Phase IIa,
placebo-controlled, randomised study of lutikizumab,
an anti-interleukin-1alpha and anti-interleukin1beta dual variable domain immunoglobulin, in
patients with erosive hand osteoarthritis. Ann
Rheum Dis. 2019; 78(3):413-420. doi: 10.1136/
annrheumdis-2018-213336.
26.Schieker M, Conaghan PG, Mindeholm L, et al.
Effects of interleukin-1β inhibition on incident hip
and knee replacement: exploratory analyses from
a randomized, double-Blind, placebo-controlled
trial. Ann Intern Med. 2020; 173(7):509-515. doi:
10.7326/M20-0527.
27.Cheleschi S, Cantarini L, Pascarelli NA, et al. Possible
chondroprotective effect of canakinumab: an in
vitro study on human osteoarthritic chondrocytes.
Cytokine 2015; 71(2):165-72. doi: 10.1016/j.
cyto.2014.10.023.
28.Chevalier X, Goupille P, Beaulieu AD, et al. Intraarticular
injection of anakinra in osteoarthritis of the knee:
a multicenter, randomized, double-blind, placebocontrolled study. Arthrit Rheum. 2009; 61(3):344-
352. doi: 10.1002/art.24096.
29.Fischer JA, Hueber AJ, Wilson S, et al. combined
inhibition of tumor necrosis factor alpha and
interleukin-17 as a therapeutic opportunity
in rheumatoid arthritis: development and
characterization of a novel bispecific antibody.
Arthrit Rheumatol. 2015; 67(1):51-62. doi: 10.1002/
art.38896.
30.Bigg H, Rowan AD. The inhibition of metalloproteinases
as a therapeutic target in rheumatoid arthritis and
osteoarthritis. Curr Opin Pharmacol. 2001; 1(3):314-
320. doi: 10.1016/s1471-4892(01)00055-8.
31.Lewis EJ, Bishop J, Bottomley KM, et al. Ro 32-3555, an
orally active collagenase inhibitor, prevents cartilage
breakdown in vitro and in vivo. Br J Pharmacol. 1997;
121(3):540-546. doi: 10.1038/sj.bjp.0701150.
32.Janusz MJ, Hookfin EB, Heitmeyer SA, et al. Moderation
of iodoacetate-induced experimental osteoarthritis
in rats by matrix metalloproteinase inhibitors.
Osteoarthritis Cartilage. 2001; 9(8):751-760. doi:
10.1053/joca.2001.0472.
33.Chevalier X, Eymard F, Richette P. Biologic agents
in osteoarthritis: hopes and Disappointments. Nat
Rev Rheumatol. 2013; 9(7):400-410. doi: 10.1038/
nrrheum.2013.44.
34.Krzeski P, Buckland-Wright C, Balí�nt G, et al.
Development of musculoskeletal toxicity without
clear benefit after administration of PG-116800, a
matrix metalloproteinase inhibitor, to patients with
knee osteoarthritis: a randomized, 12-month, doubleblind, placebo controlled study. Arthrit Res Ther
2007; 9(5):R109. doi: 10.1186/ar2315.
35.le Graverand MP, Clemmer RS, Redifer P, et al.
A 2-year randomised, double-blind, placebo
controlled, multicentre study of oral selective
iNOS inhibitor, cindunistat (SD- 6010), in patients
with symptomatic osteoarthritis of the knee. Ann
Rheum Dis. 2013; 72(2):187-195. doi: 10.1136/
annrheumdis-2012-202239.
36.Leff RL. Clinical trials of a stromelysin inhibitor.
Osteoarthritis, matrix metalloproteinase inhibition,
cartilage loss, surrogate markers, and clinical
implications. Ann N Y Acad Sci. 1999; 878:201-207.
doi: 10.1111/j.1749-6632.1999.tb07685.x.
37.Dahlberg L, Billinghurst RC, Manner P, et al. Selective
enhancement of collagenase-mediated cleavage of
resident type II collagen in cultured osteoarthritic
cartilage and arrest with a synthetic inhibitor that
spares collagenase 1 (matrix metalloproteinase
1). Arthrit Rheumat .2000; 43(3):673-682. doi:
10.1002/1529-0131(200003)43:3<673::AIDANR25>3.0.CO;2-8.
38.Johnson AR, Pavlovsky AG, Ortwine DF, et al. Discovery
and characterization of a novel inhibitor of matrix
metalloprotease-13 that reduces cartilage damage
in vivo without joint fibroplasias side effects. J Biol
Chem 2007; 282(38):27781-27791. doi: 10.1074/jbc.
M703286200.
39.Baragi VM, Becher G, Bendele AM, et al. A new
class of potent matrix metalloproteinase 13
inhibitors for potential treatment of osteoarthritis:
evidence of histologic and clinical efficacy without
musculoskeletal toxicity in rat models. Arthritis
Rheum. 2009; 60(7):2008-2018. doi: 10.1002/
art.24629.
40.Wang MN, Sampson ER, Jin H, et al. MMP13 is a critical
target gene during the progression of osteoarthritis.
Arthrit Res Ther 2013; 15(1):R5. doi: 10.1186/
ar4133.
41.Siebuhr A, Werkmann D, Bay-Jensen AC, et al. The AntiADAMTS-5 Nanobody® M6495 Protects Cartilage
Degradation Ex Vivo. Int J Mol Sci 2020; 21(17):5992.
doi: 10.3390/ijms21175992. 42.Snijders GF, van den Ende CH, van Riel PL, van den
Hoogen FH, den Broeder AA. The effects of doxycycline
on reducing symptoms in knee osteoarthritis: results
from a triple-blinded randomised controlled trial. Ann
Rheum Dis. 2011; 70(7):1191-1196. doi: 10.1136/
ard.2010.147967.
43.Zhang X, Deng XH, Song Z, et al. Matrix
Metalloproteinase Inhibition With Doxycycline
Affects the Progression of Posttraumatic
Osteoarthritis After Anterior Cruciate Ligament
Rupture: Evaluation in a New Nonsurgical Murine
ACL Rupture Model. Am J Sports Med. 2020;
48(1):143-152. doi: 10.1177/0363546519887158.
44.Hunter DJ, Pike MC, Jonas BL, Kissin E, Krop J,
McAlindon T. Phase 1 safety and tolerability study
of BMP-7 in symptomatic knee osteoarthritis.
BMC Musculoskelet Disord. 2010; 11:232. doi:
10.1186/1471-2474-11-232.
45.Müller S, Lindemann S, Gigout A. Effects of sprifermin,
IGF1, IGF2, BMP7, or CNP on bovine chondrocytes
in monolayer and 3D culture. J Orthop Res 2020;
38(3):653-662. doi: 10.1002/jor.24491.
46.Lohmander LS, Hellot S, Dreher D, et al. Intraarticular
sprifermin (recombinant human fibroblast growth
factor 18) in knee osteoarthritis: a randomized,
double-blind, placebo controlled trial. Arthrit
Rheumatol 2014; 66(7):1820-1831. doi: 10.1002/
art.38614.
47.Li J, Wang X, Ruan G, Zhu Z, Ding C. Sprifermin: a
recombinant human fibroblast growth factor 18
for the treatment of knee osteoarthritis. Expert
Opin Investig Drugs 2021; 30(9):923-30. doi:
10.1080/13543784.2021.1972970.
48.Eckstein F, Hochberg MC, Guehring H, et al. Long-term
structural and symptomatic effects of intra-articular
sprifermin in patients with knee osteoarthritis:
5-year results from the FORWARD study. Ann
Rheum Dis 2021; 80(8):1062-9. doi: 10.1136/
annrheumdis-2020-219181.
49.Madry H, Cucchiarini M. Gene therapy for human
osteoarthritis: principles and clinical translation.
Expert Opin Biol Ther 2016; 16(3):331-346. doi:
10.1517/14712598.2016.1124084.
50.Ham O, Song BW, Lee SY, et al. The role of microRNA23b in the differentiation of MSC into chondrocyte
by targeting protein kinase A signaling. Biomaterials
2012;33(18):4500-4507. doi: 10.1016/j.biomaterials.
2012.03.025.
51.Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA125b regulates the expression of aggrecanase-1
(ADAMTS-4) in human osteoarthritic chondrocytes.
Arthrit Res Ther 2013; 15(1):R28. doi: 10.1186/
ar4164.
52.Meng F, Zhang Z, Chen W, et al. MicroRNA-320
regulates matrix metalloproteinase-13 expression
in chondrogenesis and interleukin-1beta-induced
chondrocyte responses. Osteoarthritis Cartilage 2016;
24(5):932-941. doi: 10.1016/j.joca.2015.12.012.
53.Nakamura A, Rampersaud YR, Sharma A, et
al. Identification of microRNA-181a-5p and
microRNA-4454 as mediators of facet cartilage
degeneration. JCI Insight 2016; 1(12):e86820. doi:
10.1172/jci.insight.86820.
54.Sondag GR, Haqqi TM. The role of MicroRNAs and
their targets in osteoarthritis. Curr Rheumatol Rep
2016; 18(8):56. doi: 10.1007/s11926-016-0604-x.
55.Vonk LA, Kragten AH, Dhert WJ, Saris DBF, Creemers
LB. Overexpression of hsa-miR-148a promotes
cartilage production and inhibits cartilage
degradation by osteoarthritic chondrocytes.
Osteoarthritis Cartilage 2014; 22(1):145-153. doi:
10.1016/j.joca.2013.11.006.
56.Tuddenham L, Wheeler G, Ntounia-Fousara N, et
al. The cartilage specific microRNA-140 targets
histone deacetylase 4 in mouse cells. FEBS Lett
2006; 580(17):4214–4217. doi: 10.1016/j.
febslet.2006.06.080.
57.Miyaki S, Sato T, Inoue A, et al. MicroRNA-140
plays dual roles in both cartilage development and
homeostasis. Genes Dev 2010; 24(11):1173-1185.
doi: 10.1101/gad.1915510.
58.Karlsen TA, de Souza GA, Odegaard B, Engebretsen L,
Brinchmann JE. MicroRNA-140 inhibits inflammation
and stimulates chondrogenesis in a model of
interleukin 1beta-induced osteoarthritis. Mol Ther
Nucleic Acids 2016; 5(10):e373. doi: 10.1038/
mtna.2016.64.
59.Si HB, Zeng Y, Liu SY, et al. Intra-articular injection of
microRNA-140 (miRNA-140) alleviates osteoarthritis
(OA) progression by modulating extracellular
matrix (ECM) homeostasis in rats. Osteoarthritis
Cartilage 2017; 25(10):1698-1707. doi: 10.1016/j.
joca.2017.06.002.
60.Wijesinghe SN, Lindsay MA, Jones SW. Oligonucleotide
therapies in the treatment of arthritis: a narrative
review. Biomedicines 2021; 9(8):902. doi: 10.3390/
biomedicines9080902.
61.El Hajjaji H, Williams JM, Devogelaer JP, Lenz ME,
Eugene JM, Manicourt DH. Treatment with calcitonin
prevents the net loss of collagen, hyaluronan and
proteoglycan aggregates from cartilage in the
early stages of canine experimental osteoarthritis.
Osteoarthritis Cartilage 2004; 12(11):904-911. doi:
10.1016/j.joca.2004.08.005.
62.Karsdal MA, Byrjalsen I, Henriksen K, et al. The effect
of oral salmon calcitonin delivered with 5-CNAC on
bone and cartilage degradation in osteoarthritic
patients: a 14-day randomized study. Osteoarthritis
Cartilage 2010; 18(2):150-159. doi: 10.1016/j.
joca.2009.08.004.
63.Karsdal MA, Byrjalsen I, Alexandersen P, et al.
Treatment of symptomatic knee osteoarthritis with
oral salmon calcitonin: results from two phase 3
trials. Osteoarthritis Cartilage 2015; 23(4):532-543.
doi: 10.1016/j.joca.2014.12.019.
64.Stöckl S, Eitner A, Bauer RJ, König M, Johnstone
B, Grässel S. Substance P and alpha-calcitonin
gene-related peptide differentially affect human
osteoarthritic and healthy chondrocytes. Front
Immunol 2021; 12:722884. doi: 10.3389/
fimmu.2021.722884
65.Goldring MB, Berenbaum F. Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 2015;
22:51-63. doi: 10.1016/j.coph.2015.03.004.
66.Wang Y, Fan X, Xing L, Tian F. Wnt signaling: A promising
target for osteoarthritis therapy. Cell Commun Signal
2019; 17(1):97. doi: 10.1186/s12964-019-0411-x.
67.Yazici Y, McAlindon TE, Fleichsmann R, et al. A novel
Wnt pathway inhibitor, SM04690, for the treatment of
moderate to severe osteoarthritis of the knee: results
of a 24-week, randomized, controlled, phase 1 study.
Osteoarthritis Cartilage 2017; 25(10):1598-1606.
doi: 10.1016/j.joca.2017.07.006.
68.Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells:
an emerging target for diseases of ageing. Nat Rev
Drug Discov 2017; 16(10):718-735. doi: 10.1038/
nrd.2017.116.
69.Jeon OH, Kim C, Laberge RM, et al. Local clearance
of senescent cells attenuates the development of
post-traumatic osteoarthritis and creates a proregenerative environment. Nat Med 2017; 23(6):775-
781. doi: 10.1038/nm.4324.
70.Deursen JM. Senolytic therapies for healthy longevity.
Science .2019; 364(6441):636-637. doi: 10.1126/
science.aaw1299.
71.Atobe M. Activation of transient receptor potential
vanilloid (TRPV) 4 as a therapeutic strategy
in osteoarthritis. Curr Top Med Chem 2019;
19(24):2254-2267. doi: 10.2174/156802661966619
1010162850.
72.Li C, Zheng Z, Ha P, et al. Neural EGFL like 1 as a
potential pro-chondrogenic, anti-inflammatory dualfunctional disease-modifying osteoarthritis drug.
Biomaterials 2020; 226:119541. doi: 10.1016/j.
biomaterials.2019.119541.
73.Kjelgaard-Petersen CF, Sharma N, Kayed A, et al.
Tofacitinib and TPCA-1 exert chondroprotective
effects on extracellular matrix turnover in bovine
articular cartilage ex vivo. Biochem Pharmacol 2019;
165:91-98. doi: 10.1016/j.bcp.2018.07.034.
74.Sabha M, Siaton BC, Hochberg MC. Lorecivivint,
an intra-articular potential disease-modifying
osteoarthritis drug. Expert Opin Investig
Drugs 2020; 29(12):1339-1346. doi: 10.1080/
13543784.2020.1842357.
75.Yazici Y, McAlindon TE, Gibofsky A, et al. A Phase 2b
randomized trial of lorecivivint, a novel intra-articular
CLK2/DYRK1A inhibitor and Wnt pathway modulator
for knee osteoarthritis. Osteoarthritis Cartilage
2021; S1063-4584(21)00040-6. doi: 10.1016/j.
joca.2021.02.004.
76.Guo H, Yin W, Zou Z, et al. Quercitrin alleviates cartilage
extracellular matrix degradation and delays ACLT rat
osteoarthritis development: An in vivo and in vitro
study. J Adv Res 2020; 28:255-267. doi: 10.1016/j.
jare.2020.06.020.
77.77. Evans CH, Kraus VB, Setton LA. Progress in intraarticular therapy. Nat Rev Rheumatol 2014; 10(1):11-
22. doi: 10.1038/nrrheum.2013.159.
78.Liggins RT, Cruz T, Min W, Liang L, Hunter WL,
Burt HM. Intra-articular treatment of arthritis
with microsphere formulations of paclitaxel:
biocompatibility and efficacy determinations in
rabbits. Inflamm Res 2004; 53(8):363-372. doi:
10.1007/s00011-004-1273-1.
79.Colella F, Garcia JP, Sorbona M, et al. Drug delivery in
intervertebral disc degeneration and osteoarthritis:
Selecting the optimal platform for the delivery of
disease-modifying agents. J Control Release 2020;
328:985-999. doi: 10.1016/j.jconrel.2020.08.041.
80.Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell
JA. Biofunctional polymer Nanoparticles for intraarticular targeting and retention in cartilage. Nat
Mater 2008; 7(3):248-254. doi: 10.1038/nmat2116.
81.Bajpayee AG, Wong CR, Bawendi MG, Frank EH,
Grodzinski AJ. Avidin as a model for charge driven
transport into cartilage and drug delivery for
treating early stage post-traumatic osteoarthritis.
Biomaterials 2014; 35(1):538-549. doi: 10.1016/j.
biomaterials.2013.09.091.
82.Bajpayee AG, Scheu M, Grodzinsky AJ, Porter RM.
Electrostatic interactions enable rapid penetration,
enhanced uptake and retention of intra-articular
injected avidin in rat knee joints. J Orthop Res 2014;
32(8):1044-1051. doi: 10.1002/jor.22630.
83.Bajpayee AG, Quadir MA, Hammond PT, Grodzinski
AJ. Charge based intracartilage delivery of single
dose dexamethasone using Avidin nano-carriers
suppresses cytokine-induced catabolism long term.
Osteoarthritis Cartiage 2016; 24(1):71-81. doi:
10.1016/j.joca.2015.07.010.
84.Geiger BC, Wang S, Padera Jr RF, Grodzinski AJ,
Hammond PT. Cartilage penetrating nanocarriers
improve delivery and efficacy of growth factor
treatment of osteoarthritis. Sci Transl Med 2018;
10(469):eaat8800. doi: 10.1126/scitranslmed.
aat8800.
85.Matsuzaki T, Matsushita T, Tabata Y, et al. Intraarticular administration of gelatin hydrogels
incorporating rapamycin-micelles reduces the
development of experimental osteoarthritis in a
murine model. Biomaterials 2014; 35(37):9904-
9911. doi: 10.1016/j.biomaterials.2014.08.041.
86.Kang ML, Jeong SY, Im GI. Hyaluronic acid hydrogel
functionalized with self-assembled micelles of
amphiphilic PEGylated kartogenin for the treatment
of osteoarthritis. Tissue Eng Part A 2017; 23(13-
14):630-639. doi: 10.1089/ten.tea.2016.0524.
87.Elron-Gross I, Glucksam Y, Margalit R. Liposomal
dexamethasone-diclofenac combinations for local
osteoarthritis treatment. Int J Pharm 2009; 376(1-
2):84-91. doi: 10.1016/j.ijpharm.2009.04.025.
88.Elron-Gross I, Glucksam Y, Melikhov D, Margalit
R. Cyclooxygenase inhibition by diclofenac
formulated in bioadhesive carriers. Biochim Biophys
Acta 2008; 1778(4):931-936. doi: 10.1016/j.
bbamem.2008.01.002.
89.Lu HT, Sheu MT, Lin YF, et al. Injectable hyaluronicacid-doxycycline hydrogel therapy in experimental
rabbit osteoarthritis. BMC Vet Res 2013; 9:68. doi:
10.1186/1746-6148-9-68.
90.Sandker MJ, Petit A, Redout EM, et al. In situ forming
acyl-capped PCLA-PEG-PCLA triblock copolymer
based hydrogels. Biomaterials 2013; 34(32):8002-8011. doi: 10.1016/j.biomaterials.2013.07.046.
91.Lolli A, Sivasubramaniyan K, Vainieri ML, et al.
Hydrogel-based delivery of antimiR-221 enhances
cartilage regeneration by endogenous cells. J
Control Release 2019; 309:220-230. doi: 10.1016/j.
jconrel.2019.07.040.
92.Yu Y, Brouillette MJ, Seol D, et al. Use of recombinant
human stromal cell-derived factor 1alpha-loaded
fibrin/hyaluronic acid hydrogel networks to achieve
functional repair of full thickness bovine articular
cartilage via homing of chondrogenic progenitor
cells. Arthrit Rheumatol 2015; 67(5):1274-1285. doi:
10.1002/art.39049.
93.Lee CH, Cook JL, Mendelson A, et al. Regeneration
of the articular surface of the rabbit synovial joint
by cell homing: a proof of concept study. Lancet
2010; 376(9739):440-448. doi: 10.1016/S0140-
6736(10)60668-X.
94.Hochberg MC. Osteoarthritis year 2012 in review:
clinical. Osteoarthritis Cartilage 2012; 20(12):1465-
1469. doi: 10.1016/j.joca.2012.07.022.
95.Hochberg MC, Altman RD, April KT, et al., American
College of Rheumatology 2012 recommendations
for the use of nonpharmacologic and pharmacologic
therapies in osteoarthritis of the hand, hip, and knee.
Arthritis Care Res. (Hoboken) 2012; 64(4):465-474.
doi: 10.1002/acr.21596.
96.Jordan KM, Arden NK, Doherty M, et al. EULAR
recommendations 2003: an evidence based approach
to the management of knee osteoarthritis: report
of a task force of the Standing Committee for
International Clinical Studies Including Therapeutic
Trials (ESCISIT). Ann Rheum Dis 2003; 62(12):1145-
1155. doi: 10.1136/ard.2003.011742.
97.Miceli-Richard C, Le Bars M, Schmidely N, Dougados
M. Paracetamol in osteoarthritis of the knee. Ann
Rheum Dis 2004; 63(8):923-930. doi: 10.1136/
ard.2003.017236.
98.Zhang W, Moskowitz RW, Nuki G, et al. OARSI
recommendations for the management of hip
and knee osteoarthritis, part II: OARSI evidencebased, expert consensus guidelines. Osteoarthritis
Cartilage 2008; 16(2):137-162. doi: 10.1016/j.
joca.2007.12.013.
99.Kang ML, Im GI. Drug delivery systems for intraarticular treatment of osteoarthritis. Expert
Opin Drug Deliv 2014; 11(2):269-282. doi:
10.1517/17425247.2014.867325.
100. Laine L, White WB, Rostom A, Hochberg M. COX-2
selective inhibitors in the treatment of osteoarthritis.
Semin Arthritis Rheum 2008; 38(3):165-187. doi:
10.1016/j.semarthrit.2007.10.004.
101. Sostres C, Gargallo CJ, Arroyo MT, Lanas A.
Adverse effects of non-steroidal anti-inflammatory
drugs (NSAIDs, aspirin and coxibs) on upper
gastrointestinal tract. Best Pract Res Clin Gastroenterol
2010; 24(2):121-32. doi: 10.1016/j.bpg.2009.11.005.
102. Laine L. Gastrointestinal effects of NSAIDs
and coxibs. J Pain Symptom Manage 2003;
25(2 Suppl):S32-40. doi: 10.1016/s0885-3924
(02)00629-2.
103. Bijlsma JWJ, Berenbaum F, Lafeber FPJG.
Osteoarthritis: an update with relevance for clinical
practice. Lancet 2011; 377(9783):2115-2126. doi:
10.1016/S0140-6736(11)60243-2.
104. Von Korff M, Deyo RA. Potent opioids for chronic
musculoskeletal pain: flying blind? Pain 2004;
109(3):207-209. doi: 10.1016/j.pain.2004.02.019.
105. Bellamy N, Campbell J, Robinson V, Gee T, Bourne
R, Wells G. Intraarticular corticosteroid for treatment
of osteoarthritis of the knee. Cochrane Database Syst
Rev. 2005 ;( 2):CD005328. doi: 10.1002/14651858.
CD005328.
106. Gerwin N, Hops C, Lucke A. Intraarticular drug
delivery in osteoarthritis. Adv Drug Deliv Rev 2006;
58(2):226-242. doi: 10.1016/j.addr.2006.01.018.
107. Adams ME, Lussier AJ, Peyron JG. A riskbenefit assessment of injections of hyaluronan and
its derivatives in the treatment of osteoarthritis
of the knee. Drug Saf 2000; 23(2):115-130. doi:
10.2165/00002018-200023020-00003.
108. Andia I, Maffulli N. Platelet-rich plasma for
managing pain and inflammation in osteoarthritis.
Nat Rev Rheumatol 2013; 9(12):721-730. doi:
10.1038/nrrheum.2013.141.
109. O’Connell B, Wragg NM, Wilson SL. The use of PRP
injections in the management of knee osteoarthritis.
Cell Tissue Res 2019; 376(2):143-152. doi: 10.1007/
s00441-019-02996-x.
110. Han Y, Huang H, Pan J, et al. Meta-analysis
comparing platelet-rich plasma vs hyaluronic acid
injection in patients with knee osteoarthritis. Pain
Med 2019; 20(7):1418-1429. doi: 10.1093/pm/
pnz011.
111. Jansen MP, Besselink NJ, van Heerwaarden
RJ, et al. Knee joint distraction compared with
high tibial osteotomy and total knee arthroplasty:
two-year clinical, radiographic, and biochemical
marker outcomes of two randomized controlled
trials. Cartilage 2021; 12(2):181-191. doi:
10.1177/1947603519828432.
112. Jansen MP, Maschek S, van Heerwaarden RJ,
et al. Changes in cartilage thickness and denuded
bone area after knee joint distraction and high tibial
osteotomy-post-hoc analyses of two randomized
controlled trials. J Clin Med 2021; 10(2):368. doi:
10.3390/jcm10020368.
113. Goldring MB, Berenbaum F. Emerging targets in
osteoarthritis therapy. Curr Opin Pharmacol 2015;
22:51-63. doi: 10.1016/j.coph.2015.03.004.
114. Tonge DP, Pearson MJ, Jones SW. The hallmarks
of osteoarthritis and the potential to develop
personalised disease-modifying pharmacological
therapeutics. Osteoarthritis Cartilage 2014;
22(5):609-621. doi: 10.1016/j.joca.2014.03.004.
115. Matthews GL, Hunter DJ. Emerging drugs
for osteoarthritis. Expert Opin Emerg Drugs
2011;16(3):479-491. doi: 10.1517/14728214.2011.
576670.
116. Pelletier JP, Martel-Pelletier J, Raynauld JP. Most
recent developments in strategies to reduce the
progression of structural changes in osteoarthritis: today and tomorrow. Arthritis Res Ther 2006;
8(2):206. doi: 10.1186/ar1932.
117. Oo WM, Little C, Duong V, Hunter DJ. The
development of disease-modifying therapies for
osteoarthritis (DMOADs): the evidence to date. Drug
Des Devel Ther 2021; 15:2921-45. doi: 10.2147/
DDDT.S295224.