Newly Released Advances in the Molecular Mechanisms of Osseous Metastasis and Potential Therapeutic Strategies



1 Department of Orthopaedic Surgery, La Paz University Hospital, Madrid, Spain

2 Department of Orthopedic Surgery, La Paz University Hospital, Madrid, Spain


The appearance of bone metastases (BM) in individuals with advanced solid cancers (breast, prostate, lung) often 
worsens their quality of life and prognosis. Although none have been fully effective, several strategies have been used 
to combat BM. Hence, the need for new data that could be useful for treating bone metastasis. To this end, we reviewed 
the recent literature on the subject. About patients with prostate cancer, treatments with PIP5K1α inhibitors have been 
found to inhibit tumor invasion and metastasis, and G protein-coupled receptor class C group 5 member A (GPRC5A) 
could be a future therapeutic target. Regarding patients with breast cancer, we found the following: Asperolide A could 
be another curative drug; targeting transforming growth factor-beta (TGFβ) and bone morphogenetic protein (BMP) 
signaling pathways, along with osteoclast activity, could be a favorable therapeutic approach in the preclusion of osteolytic bone destruction; TRAF6 inhibitors such as 6877002 appear promising; aiming the BMP4-SMAD7 signaling axis 
is an innovative therapeutic approach; there is favorable proof for the plausible therapeutic utilization of bone aiming 
immunostimulatory MOF (BT-isMOF) nanoparticles, and inhibition of IL4R and macrophages could have therapeutic 
benefits. For lung cancer, the function of LIGHT in osteolytic osseous illness instigated by metastatic non-small cell lung 
cancer should be highlighted. 
Level of evidence: III


  1. Ponzetti M, Rucci N. Switching homes: How cancer 
    moves to bone. Int J Mol Sci 2020; 21(11):4124. doi: 
    2. Green D, Eyre H, Singh A, et al. Targeting the MAPK7/
    MMP9 axis for metastasis in primary bone cancer. 
    Oncogene 2020; 39(33):5553-69. 10.1038/s41388-
    3. Mukaida N, Zhang D, Sasaki SI. Emergence of cancerassociated fibroblasts as an indispensable cellular 
    player in bone metastasis process. Cancers (Basel) 
    2020; 12(10):2896. doi: 10.3390/cancers12102896.
    4. van de Merbel AF, van Hooij O, van der Horst G, et 
    al. The identification of small molecule inhibitors 
    that reduce invasion and metastasis of aggressive 
    cancers. Int J Mol Sci 2021; 22(4):1688. doi: 10.3390/
    5. Li Y, Long X, Wang J, Peng J, Shen K. miRNA-128 
    modulates bone neoplasms cells proliferation and 
    migration through the WNT/beta-catenin and EMT 
    signal pathways. J Orthop Surg Res. 2021; 16(1):71. 
    doi: 10.1186/s13018-020-02164-w.
    6. Lin WH, Chang YW, Hong MX, et al. STAT3 
    phosphorylation at Ser727 and Tyr705 differentially 
    regulates the EMT-MET switch and cancer metastasis. 
    Oncogene. 2021; 40(4):791-805. doi: 10.1038/
    s41388-020-01566-8  7. Nastały P, Stoupiec S, Popęda M, et al. EGFR as a stable 
    marker of prostate cancer dissemination to bones. 
    Br J Cancer 2020; 123(12):1767-74. doi: 10.1038/
    8. Lin SR, Mokgautsi N, Liu YN. Ras and Wnt interaction 
    contribute in prostate cancer bone metastasis. 
    Molecules. 2020; 25(10):2380. doi: 10.3390/
    9. Tseng JC, Huang SH, Lin CY, et al. ROR2 suppresses 
    metastasis of prostate cancer via regulation of miR199a-5p-PIAS3-AKT2 signaling axis. Cell Death Dis. 
    2020; 11(5):376. doi: 10.1038/s41419-020-2587-9.
    10.Wang C, Wang J, Chen K, et al. Caprylic acid (C8:0) 
    promotes bone metastasis of prostate cancer by 
    dysregulated adipo-osteogenic balance in bone 
    marrow. Cancer Sci 2020; 111(10):3600-12. doi: 
    11.Owen KL, Gearing LJ, Zanker DJ, et al. Prostate cancer 
    cell-intrinsic interferon signaling regulates dormancy 
    and metastatic outgrowth in bone. EMBO Rep 2020; 
    21(6):e50162. doi: 10.15252/embr.202050162.
    12.Karlsson R, Larsson P, Miftakhova R, et al. Establishment 
    of prostate tumor growth and metastasis is supported 
    by bone marrow cells and is mediated by PIP5K1alpha 
    lipid kinase. Cancers (Basel) 2020; 12(9):2719. doi: 
    13.Sawada Y, Kikugawa T, Iio H, et al. GPRC5A facilitates 
    cell proliferation through cell cycle regulation and 
    correlates with bone metastasis in prostate cancer. 
    Int J Cancer 2020; 146(5):1369-82. doi: 10.1002/
    14.Misawa A, Kondo Y, Takei H, Takizawa T. Long 
    noncoding RNA HOXA11-AS and transcription factor 
    HOXB13 modulate the expression of bone metastasisrelated genes in prostate cancer. Genes (Basel) 2021; 
    12(2):182. doi: 10.3390/genes12020182.
    15.Jiang W, Rixiati Y, Huang H, Shi Y, Huang C, Jiao B. 
    Asperolide A prevents bone metastatic breast cancer 
    via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling 
    pathway. Cancer Med. 2020; 9(21):8173-85. doi: 
    16.Mandal CC. Osteolytic metastasis in breast 
    cancer: effective prevention strategies. Expert 
    Rev Anticancer Ther 2020; 20(9):797-811. doi: 
    17.Bishop RT, Marino S, Carrasco G, et al. Combined 
    administration of a small-molecule inhibitor of 
    TRAF6 and Docetaxel reduces breast cancer skeletal 
    metastasis and osteolysis. Cancer Lett 2020; 488:27-
    39. doi: 10.1016/j.canlet.2020.05.021.
    18.Liu S, Song A, Zhou X, et al. ceRNA network development 
    and tumour-infiltrating immune cell analysis of 
    metastatic breast cancer to bone. J Bone Oncol 2020; 
    24:100304. doi: 10.1016/j.jbo.2020.100304.
    19.Salamanna F, Borsari V, Pagani S, Brodano 
    GB, Gasbarrini A, Fini M. Development and 
    characterization of a novel human 3D model of 
    bone metastasis from breast carcinoma in vitro 
    cultured. Bone 2021; 143:115773. doi: 10.1016/j.
    20.Eckhardt BL, Cao Y, Redfern AD, et al. Activation of 
    canonical BMP4-SMAD7 signaling suppresses breast 
    cancer metastasis. Cancer Res 2020;80(6):1304-15. 
    doi: 10.1158/0008-5472.CAN-19-0743.
    21.Liu J, Feng J, Li L, et al. Arginine methylation-dependent 
    LSD1 stability promotes invasion and metastasis of 
    breast cancer. EMBO Rep 2020; 21(2):e48597. doi: 
    22.Pang Y, Fu Y, Li C, et al. Metal-organic framework 
    nanoparticles for ameliorating breast cancerassociated osteolysis. Nano Lett 2020; 20(2):829-40. 
    doi: 10.1021/acs.nanolett.9b02916.
    23.Park SB, Hwang KT, Chung CK, Roy D, Yoo C. Causal 
    Bayesian gene networks associated with bone, 
    brain and lung metastasis of breast cancer. Clin Exp 
    Metastasis 2020;37(6):657-74. doi: 10.1007/s10585-
    24.Ma RY, Zhang H, Li XF, et al. Monocyte-derived 
    macrophages promote breast cancer bone metastasis 
    outgrowth. J Exp Med 2020; 217(11):e20191820. doi: 
    25.Zhang X, Yu X, Zhao Z, et al. MicroRNA-429 inhibits 
    bone metastasis in breast cancer by regulating CrkL 
    and MMP-9. Bone 2020; 130:115139. doi: 10.1016/j.
    26.Liu S, Song A, Wu Y, et al. Analysis of genomics 
    and immune infiltration patterns of epithelialmesenchymal transition related to metastatic breast 
    cancer to bone. Transl Oncol 2021; 14(2):100993. 
    doi: 10.1016/j.tranon.2020.100993.
    27.Soni S, Torvund M, Mandal CC. Molecular insights 
    into the interplay between adiposity, breast cancer 
    and bone metastasis. Clin Exp Metastasis. 2021; 
    38(2):119-138. doi: 10.1007/s10585-021-10076-0.
    28.Teng X, Wei L, Han L, Min D, Du Y. Establishment of 
    a serological molecular model for the early diagnosis 
    and progression monitoring of bone metastasis 
    in lung cancer. BMC Cancer 2020; 20(1):562. doi: 
    29.Brunetti G, Belisario DC, Bortolotti S, et al. LIGHT/
    TNFSF14 promotes osteolytic bone metastases in 
    non-small cell lung cancer patients. J Bone Miner Res 
    2020; 35(4):671-80. doi: 10.1002/jbmr.3942