1. Casanellas I, Garcia-Lizarribar A, Lagunas A, Samitier
J. Producing 3D Biomimetic Nanomaterials for
Musculoskeletal System Regeneration. Front Bioeng
Biotechnol. 2018;6:128.
2. Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative
structural organization of normal adult human
articular cartilage. Osteoarthritis Cartilage.
2002;10(7):564-72.
3. Murphy L, Helmick CG. The impact of osteoarthritis in
the United States: a population-health perspective: A
population-based review of the fourth most common
cause of hospitalization in U.S. adults. Orthop Nurs.
2012;31(2):85-91.
4. Vilela CA, da Silva Morais A, Pina S, Oliveira JM,
Correlo VM, Reis RL, et al. Clinical Trials and
Management of Osteochondral Lesions. Adv Exp Med
Biol. 2018;1058:391-413.
5. Bicho D, Pina S, Reis RL, Oliveira JM. Commercial
Products for Osteochondral Tissue Repair and
Regeneration. Adv Exp Med Biol. 2018;1058:415-28.
6. Buckwalter JA, Mankin HJ. Articular cartilage:
degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487-
504.
7. Buckwalter JA, Mankin HJ. Articular cartilage: tissue
design and chondrocyte-matrix interactions. Instr
Course Lect. 1998;47:477-86.
8. Camp CL, Stuart MJ, Krych AJ. Current concepts of
articular cartilage restoration techniques in the knee.
Sports Health. 2014;6(3):265-73.
9. Gudas R, Gudaite A, Mickevicius T, Masiulis N,
Simonaityte R, Cekanauskas E, et al. Comparison
of osteochondral autologous transplantation,
microfracture, or debridement techniques in articular
cartilage lesions associated with anterior cruciate
ligament injury: a prospective study with a 3-year
follow-up. Arthroscopy. 2013;29(1):89-97.
10.Richter DL, Schenck RC, Jr., Wascher DC, Treme G.
Knee Articular Cartilage Repair and Restoration
Techniques: A Review of the Literature. Sports Health.
2016;8(2):153-60.
11.Oliver-Welsh L, Griffin JW, Meyer MA, Gitelis ME, Cole
BJ. Deciding How Best to Treat Cartilage Defects.
Orthopedics. 2016;39(6):343-50.
12.Mason C, Dunnill P. A brief definition of regenerative
medicine. Regen Med. 2008;3(1):1-5.
13.Decker RS. Articular cartilage and joint development
from embryogenesis to adulthood. InSeminars in cell
& developmental biology 2017 (Vol. 62, pp. 50-56).
Academic Press.
14.Zhang L, Hu J, Athanasiou KA. The role of tissue
engineering in articular cartilage repair and
regeneration. Crit Rev Biomed Eng. 2009;37(1-2):1-57.
15.Jorgensen AEM, Kjaer M, Heinemeier KM. The Effect
of Aging and Mechanical Loading on the Metabolism
of Articular Cartilage. J Rheumatol. 2017;44(4):410-7.
16.Elder BD, Athanasiou KA. Hydrostatic pressure
in articular cartilage tissue engineering: from
chondrocytes to tissue regeneration. Tissue Eng Part
B Rev. 2009;15(1):43-53.
17.Zhu M, Li W, Dong X, Yuan X, Midgley AC, Chang H, et al.
In vivo engineered extracellular matrix scaffolds with
instructive niches for oriented tissue regeneration.
Nature communications. 2019;10(1):1-4.
18.Sundelacruz S, Kaplan DL. Stem cell-and scaffoldbased tissue engineering approaches to osteochondral
regenerative medicine. InSeminars in cell &
developmental biology 2009 (Vol. 20, No. 6, pp. 646-
655). Academic Press..
19.Humphrey JD, Dufresne ER, Schwartz MA.
Mechanotransduction and extracellular matrix
homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802-
12.
20.Alford JW, Cole BJ. Cartilage restoration, part 1: basic
science, historical perspective, patient evaluation, and
treatment options. Am J Sports Med. 2005;33(2):295-
306.
21.Patel JM, Wise BC, Bonnevie ED, Mauck RL. A
Systematic Review and Guide to Mechanical Testing
for Articular Cartilage Tissue Engineering. Tissue Eng
Part C Methods. 2019;25(10):593-608.
22.Yamashita A, Tamamura Y, Morioka M, Karagiannis P,
Shima N, Tsumaki N. Considerations in hiPSC-derived
cartilage for articular cartilage repair. Inflammation
and Regeneration. 2018;38(1):1-7..
23.Tatari H. The structure, physiology, and biomechanics
of articular cartilage: injury and repair. Acta
orthopaedica et traumatologica turcica. 2007;41:1-5.
24.Yari D, Ehsanbakhsh Z, Validad MH, Langroudi
FH. Association of TIMP-1 and COL4A4 Gene
Polymorphisms with Keratoconus in an Iranian
Population. J Ophthalmic Vis Res. 2020;15(3):299-
307.
25.Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP,
Khalil AA, et al. Chondrogenic potential of physically
treated bovine cartilage matrix derived porous
scaffolds on human dermal fibroblast cells. J Biomed
Mater Res A. 2016;104(1):245-56.
26.Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G,
Stark GB, Sudkamp NP, et al. Differential expression
pattern of extracellular matrix molecules during
chondrogenesis of mesenchymal stem cells from
bone marrow and adipose tissue. Tissue Eng.
2006;12(10):2853-62.
27.Vincent TL, Wann AK. Mechanoadaptation: articular
cartilage through thick and thin. The Journal of
physiology. 2019;597(5):1271-81..
28.Roughley PJ, Lee ER. Cartilage proteoglycans:
structure and potential functions. Microsc Res Tech.
1994;28(5):385-97.
29.Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate
proteoglycans. Cold Spring Harbor perspectives in
biology. 2011;3(7):a004952.
30.Neves MI, Araújo M, Moroni L, da Silva RM, Barrias
CC. Glycosaminoglycan-inspired biomaterials for
the development of bioactive hydrogel networks.
Molecules. 2020;25(4):978.
31.Iozzo RV, Schaefer L. Proteoglycan form and function:
A comprehensive nomenclature of proteoglycans.
Matrix Biol. 2015;42:11-55.
32.Driessen BJH, Logie C, Vonk LA. Cellular
reprogramming for clinical cartilage repair. Cell Biol
Toxicol. 2017;33(4):329-49.
33.Wilusz RE, Sanchez-Adams J, Guilak F. The structure
and function of the pericellular matrix of articular
cartilage. Matrix Biol. 2014;39:25-32.
34.Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic
Science of Articular Cartilage. Clin Sports Med.
2017;36(3):413-25.
35.Bolton MC, Dudhia J, Bayliss MT. Age-related changes
in the synthesis of link protein and aggrecan in human
articular cartilage: implications for aggregate stability.
Biochem J. 1999;337(1):77-82.
36.Price JS, Waters JG, Darrah C, Pennington C, Edwards
DR, Donell ST, et al. The role of chondrocyte senescence
in osteoarthritis. Aging Cell. 2002;1(1):57-65.
37.Saravani R, Yari D, Saravani S, Hasanian-Langroudi
F. Correlation between the COL4A3, MMP-9, and
TIMP-1 polymorphisms and risk of keratoconus. Jpn
J Ophthalmol. 2017;61(3):218-22.
38.Brittberg M, Lindahl A, Nilsson A, Ohlsson C,
Isaksson O, Peterson L. Treatment of deep cartilage
defects in the knee with autologous chondrocyte and transplantation. Instr Course Lect. 1998;47:487-
504.
7. Buckwalter JA, Mankin HJ. Articular cartilage: tissue
design and chondrocyte-matrix interactions. Instr
Course Lect. 1998;47:477-86.
8. Camp CL, Stuart MJ, Krych AJ. Current concepts of
articular cartilage restoration techniques in the knee.
Sports Health. 2014;6(3):265-73.
9. Gudas R, Gudaite A, Mickevicius T, Masiulis N,
Simonaityte R, Cekanauskas E, et al. Comparison
of osteochondral autologous transplantation,
microfracture, or debridement techniques in articular
cartilage lesions associated with anterior cruciate
ligament injury: a prospective study with a 3-year
follow-up. Arthroscopy. 2013;29(1):89-97.
10.Richter DL, Schenck RC, Jr., Wascher DC, Treme G.
Knee Articular Cartilage Repair and Restoration
Techniques: A Review of the Literature. Sports Health.
2016;8(2):153-60.
11.Oliver-Welsh L, Griffin JW, Meyer MA, Gitelis ME, Cole
BJ. Deciding How Best to Treat Cartilage Defects.
Orthopedics. 2016;39(6):343-50.
12.Mason C, Dunnill P. A brief definition of regenerative
medicine. Regen Med. 2008;3(1):1-5.
13.Decker RS. Articular cartilage and joint development
from embryogenesis to adulthood. InSeminars in cell
& developmental biology 2017 (Vol. 62, pp. 50-56).
Academic Press.
14.Zhang L, Hu J, Athanasiou KA. The role of tissue
engineering in articular cartilage repair and
regeneration. Crit Rev Biomed Eng. 2009;37(1-2):1-57.
15.Jorgensen AEM, Kjaer M, Heinemeier KM. The Effect
of Aging and Mechanical Loading on the Metabolism
of Articular Cartilage. J Rheumatol. 2017;44(4):410-7.
16.Elder BD, Athanasiou KA. Hydrostatic pressure
in articular cartilage tissue engineering: from
chondrocytes to tissue regeneration. Tissue Eng Part
B Rev. 2009;15(1):43-53.
17.Zhu M, Li W, Dong X, Yuan X, Midgley AC, Chang H, et al.
In vivo engineered extracellular matrix scaffolds with
instructive niches for oriented tissue regeneration.
Nature communications. 2019;10(1):1-4.
18.Sundelacruz S, Kaplan DL. Stem cell-and scaffoldbased tissue engineering approaches to osteochondral
regenerative medicine. InSeminars in cell &
developmental biology 2009 (Vol. 20, No. 6, pp. 646-
655). Academic Press..
19.Humphrey JD, Dufresne ER, Schwartz MA.
Mechanotransduction and extracellular matrix
homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802-
12.
20.Alford JW, Cole BJ. Cartilage restoration, part 1: basic
science, historical perspective, patient evaluation, and
treatment options. Am J Sports Med. 2005;33(2):295-
306.
21.Patel JM, Wise BC, Bonnevie ED, Mauck RL. A
Systematic Review and Guide to Mechanical Testing
for Articular Cartilage Tissue Engineering. Tissue Eng
Part C Methods. 2019;25(10):593-608.
22.Yamashita A, Tamamura Y, Morioka M, Karagiannis P,
Shima N, Tsumaki N. Considerations in hiPSC-derived
cartilage for articular cartilage repair. Inflammation
and Regeneration. 2018;38(1):1-7..
23.Tatari H. The structure, physiology, and biomechanics
of articular cartilage: injury and repair. Acta
orthopaedica et traumatologica turcica. 2007;41:1-5.
24.Yari D, Ehsanbakhsh Z, Validad MH, Langroudi
FH. Association of TIMP-1 and COL4A4 Gene
Polymorphisms with Keratoconus in an Iranian
Population. J Ophthalmic Vis Res. 2020;15(3):299-
307.
25.Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP,
Khalil AA, et al. Chondrogenic potential of physically
treated bovine cartilage matrix derived porous
scaffolds on human dermal fibroblast cells. J Biomed
Mater Res A. 2016;104(1):245-56.
26.Mehlhorn AT, Niemeyer P, Kaiser S, Finkenzeller G,
Stark GB, Sudkamp NP, et al. Differential expression
pattern of extracellular matrix molecules during
chondrogenesis of mesenchymal stem cells from
bone marrow and adipose tissue. Tissue Eng.
2006;12(10):2853-62.
27.Vincent TL, Wann AK. Mechanoadaptation: articular
cartilage through thick and thin. The Journal of
physiology. 2019;597(5):1271-81..
28.Roughley PJ, Lee ER. Cartilage proteoglycans:
structure and potential functions. Microsc Res Tech.
1994;28(5):385-97.
29.Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate
proteoglycans. Cold Spring Harbor perspectives in
biology. 2011;3(7):a004952.
30.Neves MI, Araújo M, Moroni L, da Silva RM, Barrias
CC. Glycosaminoglycan-inspired biomaterials for
the development of bioactive hydrogel networks.
Molecules. 2020;25(4):978.
31.Iozzo RV, Schaefer L. Proteoglycan form and function:
A comprehensive nomenclature of proteoglycans.
Matrix Biol. 2015;42:11-55.
32.Driessen BJH, Logie C, Vonk LA. Cellular
reprogramming for clinical cartilage repair. Cell Biol
Toxicol. 2017;33(4):329-49.
33.Wilusz RE, Sanchez-Adams J, Guilak F. The structure
and function of the pericellular matrix of articular
cartilage. Matrix Biol. 2014;39:25-32.
34.Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic
Science of Articular Cartilage. Clin Sports Med.
2017;36(3):413-25.
35.Bolton MC, Dudhia J, Bayliss MT. Age-related changes
in the synthesis of link protein and aggrecan in human
articular cartilage: implications for aggregate stability.
Biochem J. 1999;337(1):77-82.
36.Price JS, Waters JG, Darrah C, Pennington C, Edwards
DR, Donell ST, et al. The role of chondrocyte senescence
in osteoarthritis. Aging Cell. 2002;1(1):57-65.
37.Saravani R, Yari D, Saravani S, Hasanian-Langroudi
F. Correlation between the COL4A3, MMP-9, and
TIMP-1 polymorphisms and risk of keratoconus. Jpn
J Ophthalmol. 2017;61(3):218-22.
38.Brittberg M, Lindahl A, Nilsson A, Ohlsson C,
Isaksson O, Peterson L. Treatment of deep cartilage
defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889-95. 39.Lepperdinger G, Brunauer R, Jamnig A, Laschober G,
Kassem M. Controversial issue: is it safe to employ
mesenchymal stem cells in cell-based therapies? Exp
Gerontol. 2008;43(11):1018-23.
40.Mendelson A, Frank E, Allred C, Jones E, Chen M, Zhao
W, et al. Chondrogenesis by chemotactic homing of
synovium, bone marrow, and adipose stem cells in
vitro. FASEB J. 2011;25(10):3496-504.
41.Lo Monaco M, Merckx G, Ratajczak J, Gervois P,
Hilkens P, Clegg P, et al. Stem Cells for Cartilage Repair:
Preclinical Studies and Insights in Translational
Animal Models and Outcome Measures. Stem Cells
Int. 2018;2018:9079538.
42.Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, et al.
Advances and Prospects in Stem Cells for Cartilage
Regeneration. Stem Cells Int. 2017;2017:4130607.
43.Jacob G, Shimomura K, Krych AJ, Nakamura N. The
Meniscus Tear: A Review of Stem Cell Therapies. Cells.
2019;9(1).
44.Gur-Cohen S, Yang H, Baksh SC, Miao Y, Levorse
J, Kataru RP, et al. Stem cell-driven lymphatic
remodeling coordinates tissue regeneration. Science.
2019;366(6470):1218-25.
45.Wang WG, Lou SQ, Ju XD, Xia K, Xia JH. In vitro
chondrogenesis of human bone marrow-derived
mesenchymal progenitor cells in monolayer culture:
activation by transfection with TGF-beta2. Tissue Cell.
2003;35(1):69-77.
46.Caplan AI. Adult mesenchymal stem cells for tissue
engineering versus regenerative medicine. J Cell
Physiol. 2007;213(2):341-7.
47.Mahmoudifar N, Doran PM. Chondrogenic
differentiation of human adipose-derived stem cells in
polyglycolic acid mesh scaffolds under dynamic culture
conditions. Biomaterials. 2010;31(14):3858-67.
48.Pievani A, Scagliotti V, Russo FM, Azario I, Rambaldi
B, Sacchetti B, et al. Comparative analysis of
multilineage properties of mesenchymal stromal
cells derived from fetal sources shows an advantage
of mesenchymal stromal cells isolated from cord
blood in chondrogenic differentiation potential.
Cytotherapy. 2014;16(7):893-905.
49.Wang SJ, Jiang D, Zhang ZZ, Huang AB, Qi YS, Wang
HJ, et al. Chondrogenic Potential of Peripheral
Blood Derived Mesenchymal Stem Cells Seeded on
Demineralized Cancellous Bone Scaffolds. Sci Rep.
2016;6:36400.
50.Zuliani CC, Bombini MF, Andrade KC, Mamoni R,
Pereira AH, Coimbra IB. Micromass cultures are
effective for differentiation of human amniotic fluid
stem cells into chondrocytes. Clinics (Sao Paulo).
2018;73:e268.
51.Longoni A, Utomo L, van Hooijdonk IE, Bittermann GK,
Vetter VC, Kruijt Spanjer EC, et al. The chondrogenic
differentiation potential of dental pulp stem cells. Eur
Cell Mater. 2020;39:121-35.
52.To K, Zhang B, Romain K, Mak C, Khan W. SynoviumDerived Mesenchymal Stem Cell Transplantation in
Cartilage Regeneration: A PRISMA Review of in vivo
Studies. Front Bioeng Biotechnol. 2019;7:314.
53.Andriamanalijaona R, Duval E, Raoudi M, Lecourt S,
Vilquin JT, Marolleau JP, et al. Differentiation potential
of human muscle-derived cells towards chondrogenic
phenotype in alginate beads culture. Osteoarthritis
Cartilage. 2008;16(12):1509-18.
54.Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo
JU, Johnstone B. Chondrogenic potential of progenitor
cells derived from human bone marrow and adipose
tissue: a patient-matched comparison. J Orthop Res.
2005;23(6):1383-9.
55.Contentin R, Demoor M, Concari M, Desance M, Audigie
F, Branly T, et al. Comparison of the Chondrogenic
Potential of Mesenchymal Stem Cells Derived from
Bone Marrow and Umbilical Cord Blood Intended
for Cartilage Tissue Engineering. Stem Cell Rev Rep.
2020;16(1):126-43.
56.Silva JC, Udangawa RN, Chen J, Mancinelli CD,
Garrudo FFF, Mikael PE, et al. Kartogenin-loaded
coaxial PGS/PCL aligned nanofibers for cartilage
tissue engineering. Mater Sci Eng C Mater Biol Appl.
2020;107:110291.
57.Moura CS, Silva JC, Faria S, Fernandes PR, da Silva
CL, Cabral JMS, et al. Chondrogenic differentiation
of mesenchymal stem/stromal cells on 3D porous
poly (epsilon-caprolactone) scaffolds: Effects
of material alkaline treatment and chondroitin
sulfate supplementation. J Biosci Bioeng.
2020;129(6):756-64.
58.Kohli N, Wright KT, Sammons RL, Jeys L, Snow
M, Johnson WE. An In Vitro Comparison of the
Incorporation, Growth, and Chondrogenic Potential
of Human Bone Marrow versus Adipose Tissue
Mesenchymal Stem Cells in Clinically Relevant
Cell Scaffolds Used for Cartilage Repair. Cartilage.
2015;6(4):252-63.
59.Satue M, Schuler C, Ginner N, Erben RG. Intraarticularly injected mesenchymal stem cells promote
cartilage regeneration, but do not permanently
engraft in distant organs. Sci Rep. 2019;9(1):10153.
60.Secunda R, Vennila R, Mohanashankar AM,
Rajasundari M, Jeswanth S, Surendran R. Isolation,
expansion and characterisation of mesenchymal
stem cells from human bone marrow, adipose tissue,
umbilical cord blood and matrix: a comparative study.
Cytotechnology. 2015;67(5):793-807.
61.Baghaei K, Hashemi SM, Tokhanbigli S, Asadi Rad A,
Assadzadeh-Aghdaei H, Sharifian A, et al. Isolation,
differentiation, and characterization of mesenchymal
stem cells from human bone marrow. Gastroenterol
Hepatol Bed Bench. 2017;10(3):208-13.
62.Grskovic B, Ruzicka K, Karimi A, Qujeq D, Muller MM.
Cell cycle analysis of the CD133+ and CD133- cells
isolated from umbilical cord blood. Clin Chim Acta.
2004;343(1-2):173-8.
63.Park D, Lim J, Park JY, Lee SH. Concise Review: Stem Cell
Microenvironment on a Chip: Current Technologies
for Tissue Engineering and Stem Cell Biology. Stem
Cells Transl Med. 2015;4(11):1352-68.
64.Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen
EH, Koenderink GH. A guide to mechanobiology:
Where biology and physics meet. Biochim Biophys
Acta. 2015;1853(11 Pt B):3043-52. 65.Kim IG, Gil CH, Seo J, Park SJ, Subbiah R, Jung TH, et
al. Mechanotransduction of human pluripotent stem
cells cultivated on tunable cell-derived extracellular
matrix. Biomaterials. 2018;150:100-11.
66.Johnson VL, Hunter DJ. The epidemiology of
osteoarthritis. Best Pract Res Clin Rheumatol.
2014;28(1):5-15.
67.Hattori T, Muller C, Gebhard S, Bauer E, Pausch F,
Schlund B, et al. SOX9 is a major negative regulator
of cartilage vascularization, bone marrow formation
and endochondral ossification. Development.
2010;137(6):901-11.
68.Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L,
Vecsei V, et al. Dedifferentiation-associated changes in
morphology and gene expression in primary human
articular chondrocytes in cell culture. Osteoarthritis
Cartilage. 2002;10(1):62-70.
69.69. Zou J, Bai B, Yao Y. Progress of Co-culture
Systems in Cartilage Regeneration. Expert Opin Biol
Ther. 2018;18(11):1151-8.
70.70. Benya PD, Shaffer JD. Dedifferentiated
chondrocytes reexpress the differentiated collagen
phenotype when cultured in agarose gels. Cell.
1982;30(1):215-24.
71.Okubo R, Asawa Y, Watanabe M, Nagata S, Nio
M, Takato T, et al. Proliferation medium in threedimensional culture of auricular chondrocytes
promotes effective cartilage regeneration in vivo.
Regen Ther. 2019;11:306-15.
72.Jin GZ, Kim HW. Efficacy of collagen and
alginate hydrogels for the prevention of rat
chondrocyte dedifferentiation. J Tissue Eng.
2018;9:2041731418802438.
73.Puetzer JL, Petitte JN, Loboa EG. Comparative review
of growth factors for induction of three-dimensional
in vitro chondrogenesis in human mesenchymal stem
cells isolated from bone marrow and adipose tissue.
Tissue Eng Part B Rev. 2010;16(4):435-44.
74.Schumann D, Kujat R, Nerlich M, Angele P.
Mechanobiological conditioning of stem cells for
cartilage tissue engineering. Biomed Mater Eng.
2006;16(4 Suppl):S37-52.
75.Zhang S, Vijayavenkataraman S, Lu WF, Fuh JYH.
A review on the use of computational methods
to characterize, design, and optimize tissue
engineering scaffolds, with a potential in 3D printing
fabrication. J Biomed Mater Res B Appl Biomater.
2019;107(5):1329-51.
76.Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal
MJ, Nadjmi N, et al. Polymeric scaffolds in tissue
engineering: a literature review. J Biomed Mater Res
B Appl Biomater. 2017;105(2):431-59.
77.Chai Q, Jiao Y, Yu X. Hydrogels for Biomedical
Applications: Their Characteristics and the
Mechanisms behind Them. Gels. 2017;3(1).
78.Bordbar S, Lotfi Bakhshaiesh N, Khanmohammadi
M, Sayahpour FA, Alini M, Baghaban Eslaminejad
M. Production and evaluation of decellularized
extracellular matrix hydrogel for cartilage
regeneration derived from knee cartilage. J Biomed
Mater Res A. 2020;108(4):938-46.
79.Thompson WR, Scott A, Loghmani MT, Ward SR,
Warden SJ. Understanding Mechanobiology: Physical
Therapists as a Force in Mechanotherapy and
Musculoskeletal Regenerative Rehabilitation. Phys
Ther. 2016;96(4):560-9.
80.Marrella A, Lee TY, Lee DH, Karuthedom S, Syla
D, Chawla A, et al. Engineering vascularized and
innervated bone biomaterials for improved skeletal
tissue regeneration. Mater Today (Kidlington).
2018;21(4):362-76.
81.Hersel U, Dahmen C, Kessler H. RGD modified
polymers: biomaterials for stimulated cell adhesion
and beyond. Biomaterials. 2003;24(24):4385-415.
82.Amann E, Wolff P, Breel E, van Griensven M, Balmayor
ER. Hyaluronic acid facilitates chondrogenesis
and matrix deposition of human adipose derived
mesenchymal stem cells and human chondrocytes cocultures. Acta Biomater. 2017;52:130-44.
83.Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M,
et al. Advances in Porous Scaffold Design for Bone
and Cartilage Tissue Engineering and Regeneration.
Tissue Eng Part B Rev. 2019;25(1):14-29.
84.Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers
for regenerative medicine. Adv Healthc Mater.
2012;1(1):10-25.
85.Amiri N, Rozbeh Z, Afrough T, Sajadi Tabassi SA,
Moradi A, Movaffagh J. Optimization of ChitosanGelatin Nanofibers Production: Investigating the
Effect of Solution Properties and Working Parameters
on Fibers Diameter. BioNanoScience. 2018;8(3):778-
89.
86.Amiri N, Moradi A, Tabasi SAS, Movaffagh J. Modeling
and process optimization of electrospinning of
chitosan-collagen nanofiber by response surface
methodology. Materials Research Express. 2018;
5(4):045404.
87.Braghirolli DI, Steffens D, Pranke P. Electrospinning
for regenerative medicine: a review of the main topics.
Drug Discov Today. 2014;19(6):743-53.
88.Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin
biomaterials for tissue regenerations. Adv Drug Deliv
Rev. 2013;65(4):457-70.
89.Friess W. Collagen--biomaterial for drug delivery. Eur
J Pharm Biopharm. 1998;45(2):113-36.
90.Ma PX, Zhang R. Synthetic nano-scale fibrous
extracellular matrix. J Biomed Mater Res.
1999;46(1):60-72.
91.Garcia Y, Wilkins B, Collighan RJ, Griffin M, Pandit
A. Towards development of a dermal rudiment for
enhanced wound healing response. Biomaterials.
2008;29(7):857-68.
92.Movaffagh J, Fazly Bazzaz BS, Yazdi AT, Sajadi-Tabassi
A, Azizzadeh M, Najafi E, et al. Wound Healing and
Antimicrobial Effects of Chitosan-hydrogel/Honey
Compounds in a Rat Full-thickness Wound Model.
Wounds. 2019;31(9):228-35.
93.Stokols S, Tuszynski MH. Freeze-dried agarose
scaffolds with uniaxial channels stimulate and guide
linear axonal growth following spinal cord injury.
Biomaterials. 2006;27(3):443-51.
94.Bozkurt A, Lassner F, O’Dey D, Deumens R, Bocker A, Schwendt T, et al. The role of microstructured and
interconnected pore channels in a collagen-based
nerve guide on axonal regeneration in peripheral
nerves. Biomaterials. 2012;33(5):1363-75.
95.Ghassemi T, Saghatolslami N, Matin MM, Gheshlaghi
R, Moradi A. CNT-decellularized cartilage hybrids
for tissue engineering applications. Biomed Mater.
2017;12(6):065008.
96.Rowland CR, Lennon DP, Caplan AI, Guilak F. The
effects of crosslinking of scaffolds engineered from
cartilage ECM on the chondrogenic differentiation of
MSCs. Biomaterials. 2013;34(23):5802-12.
97.Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J, et al. Longterm effects of knitted silk-collagen sponge scaffold
on anterior cruciate ligament reconstruction
and osteoarthritis prevention. Biomaterials.
2014;35(28):8154-63.
98.Qujeq D, Abassi R, Faeizi F, Parsian H, Faraji AS, Taheri
H, et al. Effect of granulocyte colony-stimulating factor
administration on tissue regeneration due to carbon
tetrachloride-induced liver damage in experimental
model. Toxicol Ind Health. 2013;29(6):498-503.
99.Drury JL, Mooney DJ. Hydrogels for tissue engineering:
scaffold design variables and applications.
Biomaterials. 2003;24(24):4337-51.
100. Zhou Y, Liang K, Zhao S, Zhang C, Li J, Yang H, et al.
Photopolymerized maleilated chitosan/methacrylated
silk fibroin micro/nanocomposite hydrogels as
potential scaffolds for cartilage tissue engineering. Int
J Biol Macromol. 2018;108:383-90.
101. Burdick JA, Chung C, Jia X, Randolph MA, Langer
R. Controlled degradation and mechanical behavior
of photopolymerized hyaluronic acid networks.
Biomacromolecules. 2005;6(1):386-91.
102. Joanne P, Kitsara M, Boitard SE, Naemetalla H,
Vanneaux V, Pernot M, et al. Nanofibrous clinical-grade
collagen scaffolds seeded with human cardiomyocytes
induces cardiac remodeling in dilated cardiomyopathy.
Biomaterials. 2016;80:157-68.
103. Miao Z, Lu Z, Wu H, Liu H, Li M, Lei D, et al.
Collagen, agarose, alginate, and Matrigel hydrogels as
cell substrates for culture of chondrocytes in vitro: A
comparative study. J Cell Biochem. 2017.
104. Stoppel WL, Ghezzi CE, McNamara SL, Black
LD, 3rd, Kaplan DL. Clinical applications of naturally
derived biopolymer-based scaffolds for regenerative
medicine. Ann Biomed Eng. 2015;43(3):657-80.
105. Chan G, Mooney DJ. New materials for tissue
engineering: towards greater control over the biological
response. Trends Biotechnol. 2008;26(7):382-92.
106. Cheng CW, Solorio LD, Alsberg E. Decellularized
tissue and cell-derived extracellular matrices
as scaffolds for orthopaedic tissue engineering.
Biotechnol Adv. 2014;32(2):462-84.
107. Morris AH, Stamer DK, Kyriakides TR. The host
response to naturally-derived extracellular matrix
biomaterials. Semin Immunol. 2017;29:72-91.
108. Hoshiba T, Lu H, Kawazoe N, Chen G.
Decellularized matrices for tissue engineering. Expert
Opin Biol Ther. 2010;10(12):1717-28.
109. Gupta SK, Mishra NC, Dhasmana A.
Decellularization Methods for Scaffold Fabrication.
Methods Mol Biol. 2018;1577:1-10.
110. Kim YS, Majid M, Melchiorri AJ, Mikos AG.
Applications of decellularized extracellular matrix in
bone and cartilage tissue engineering. Bioeng Transl
Med. 2019;4(1):83-95.
111. Johnson TD, Hill RC, Dzieciatkowska M, Nigam
V, Behfar A, Christman KL, et al. Quantification
of decellularized human myocardial matrix: A
comparison of six patients. Proteomics Clin Appl.
2016;10(1):75-83.
112. Sanchez PL, Fernandez-Santos ME, Costanza S,
Climent AM, Moscoso I, Gonzalez-Nicolas MA, et al.
Acellular human heart matrix: A critical step toward
whole heart grafts. Biomaterials. 2015;61:279-89.
113. VeDepo MC, Buse EE, Quinn RW, Williams TD,
Detamore MS, Hopkins RA, et al. Species-specific
effects of aortic valve decellularization. Acta Biomater.
2017;50:249-58.
114. Pellegata AF, Asnaghi MA, Stefani I, Maestroni A,
Maestroni S, Dominioni T, et al. Detergent-enzymatic
decellularization of swine blood vessels: insight on
mechanical properties for vascular tissue engineering.
Biomed Res Int. 2013;2013:918753.
115. Ghassemi T, Saghatoleslami N, Mahdavi-Shahri
N, Matin MM, Gheshlaghi R, Moradi A. A comparison
study of different decellularization treatments on
bovine articular cartilage. J Tissue Eng Regen Med.
2019;13(10):1861-71.
116. Moradi A, Pramanik S, Ataollahi F, Abdul Khalil
A, Kamarul T, Pingguan-Murphy B. A comparison
study of different physical treatments on cartilage
matrix derived porous scaffolds for tissue
engineering applications. Sci Technol Adv Mater.
2014;15(6):065001.
117. Garrigues NW, Little D, Sanchez-Adams J, Ruch
DS, Guilak F. Electrospun cartilage-derived matrix
scaffolds for cartilage tissue engineering. J Biomed
Mater Res A. 2014;102(11):3998-4008.
118. Cheng NC, Estes BT, Young TH, Guilak F. Genipincrosslinked cartilage-derived matrix as a scaffold for
human adipose-derived stem cell chondrogenesis.
Tissue Eng Part A. 2013;19(3-4):484-96.
119. Cheng NC, Estes BT, Young TH, Guilak F.
Engineered cartilage using primary chondrocytes
cultured in a porous cartilage-derived matrix. Regen
Med. 2011;6(1):81-93.
120. Mao Y, Block T, Singh-Varma A, Sheldrake A,
Leeth R, Griffey S, et al. Extracellular matrix derived
from chondrocytes promotes rapid expansion of
human primary chondrocytes in vitro with reduced
dedifferentiation. Acta Biomater. 2019;85:75-83.
121. Fermor HL, McLure SW, Taylor SD, Russell SL,
Williams S, Fisher J, et al. Biological, biochemical and
biomechanical characterisation of articular cartilage
from the porcine, bovine and ovine hip and knee.
Biomed Mater Eng. 2015;25(4):381-95.
122. Taylor SD, Tsiridis E, Ingham E, Jin Z, Fisher J,
Williams S. Comparison of human and animal femoral
head chondral properties and geometries. Proc Inst
Mech Eng H. 2012;226(1):55-62. 123. Palmese LL, Thapa RK, Sullivan MO, Kiick KL.
Hybrid hydrogels for biomedical applications. Curr
Opin Chem Eng. 2019;24:143-57.
124. Grover GN, Rao N, Christman KL. Myocardial
matrix-polyethylene glycol hybrid hydrogels for tissue
engineering. Nanotechnology. 2014;25(1):014011.
125. Mansour JM, Welter JF. Multimodal evaluation
of tissue-engineered cartilage. J Med Biol Eng.
2013;33(1):1-16.
126. Zhou S, Wang Y, Zhang K, Cao N, Yang R, Huang
J, et al. The Fabrication and Evaluation of a Potential
Biomaterial Produced with Stem Cell Sheet Technology
for Future Regenerative Medicine. Stem Cells Int.
2020;2020:9567362.
127. Vincourt JB, Lionneton F, Kratassiouk G,
Guillemin F, Netter P, Mainard D, et al. Establishment of
a reliable method for direct proteome characterization
of human articular cartilage. Mol Cell Proteomics.
2006;5(10):1984-95.
128. De Ceuninck F, Marcheteau E, Berger S, Caliez
A, Dumont V, Raes M, et al. Assessment of some tools
for the characterization of the human osteoarthritic
cartilage proteome. J Biomol Tech. 2005;16(3):256-65.
129. Gaudet AD, Popovich PG. Extracellular matrix
regulation of inflammation in the healthy and injured
spinal cord. Exp Neurol. 2014;258:24-34.
130. Acharya C, Yik JH, Kishore A, Van Dinh V, Di
Cesare PE, Haudenschild DR. Cartilage oligomeric
matrix protein and its binding partners in the cartilage
extracellular matrix: interaction, regulation and role in
chondrogenesis. Matrix Biol. 2014;37:102-11.
131. Oh CD, Lu Y, Liang S, Mori-Akiyama Y, Chen D,
de Crombrugghe B, et al. SOX9 regulates multiple
genes in chondrocytes, including genes encoding ECM
proteins, ECM modification enzymes, receptors, and
transporters. PLoS One. 2014;9(9):e107577.
132. Tew SR, Clegg PD, Brew CJ, Redmond CM,
Hardingham TE. SOX9 transduction of a human
chondrocytic cell line identifies novel genes regulated
in primary human chondrocytes and in osteoarthritis.
Arthritis Res Ther. 2007;9(5):R107.
133. Henry SP, Liang S, Akdemir KC, de Crombrugghe
B. The postnatal role of Sox9 in cartilage. J Bone Miner
Res. 2012;27(12):2511-25.
134. Kim Y, Murao H, Yamamoto K, Deng JM, Behringer
RR, Nakamura T, et al. Generation of transgenic mice
for conditional overexpression of Sox9. J Bone Miner
Metab. 2011;29(1):123-9.
135. Taheem DK, Foyt DA, Loaiza S, Ferreira SA, Ilic D,
Auner HW, et al. Differential Regulation of Human Bone
Marrow Mesenchymal Stromal Cell Chondrogenesis
by Hypoxia Inducible Factor-1alpha Hydroxylase
Inhibitors. Stem Cells. 2018;36(9):1380-92.
136. Jahr H, Gunes S, Kuhn AR, Nebelung S, Pufe T.
Bioreactor-Controlled Physoxia Regulates TGF-beta
Signaling to Alter Extracellular Matrix Synthesis by
Human Chondrocytes. Int J Mol Sci. 2019;20(7).
137. Markway BD, Cho H, Johnstone B. Hypoxia
promotes redifferentiation and suppresses markers
of hypertrophy and degeneration in both healthy
and osteoarthritic chondrocytes. Arthritis Res Ther.
2013;15(4):R92.
138. Schrobback K, Malda J, Crawford RW, Upton
Z, Leavesley DI, Klein TJ. Effects of oxygen on zonal
marker expression in human articular chondrocytes.
Tissue Eng Part A. 2012;18(9-10):920-33.
139. Milner PI, Wilkins RJ, Gibson JS. The role of
mitochondrial reactive oxygen species in pH regulation
in articular chondrocytes. Osteoarthritis Cartilage.
2007;15(7):735-42.
140. Yari D, Saravani R, Saravani S, Ebrahimian K,
Galavi HR. Genetic Polymorphisms of Catalase and
Glutathione Peroxidase-1 in Keratoconus. Iran J Public
Health. 2018;47(10):1567-74.
141. Das RH, van Osch GJ, Kreukniet M, Oostra J,
Weinans H, Jahr H. Effects of individual control of pH
and hypoxia in chondrocyte culture. J Orthop Res.
2010;28(4):537-45.
142. Mitchell AC, Briquez PS, Hubbell JA, Cochran JR.
Engineering growth factors for regenerative medicine
applications. Acta Biomater. 2016;30:1-12.
143. Belair DG, Le NN, Murphy WL. Design of growth
factor sequestering biomaterials. Chem Commun
(Camb). 2014;50(99):15651-68.
144. Thielen NGM, van der Kraan PM, van Caam
APM. TGFbeta/BMP Signaling Pathway in Cartilage
Homeostasis. Cells. 2019;8(9).
145. Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X,
et al. Transforming growth factor-beta in stem cells
and tissue homeostasis. Bone Res. 2018;6:2.
146. Coricor G, Serra R. TGF-beta regulates
phosphorylation and stabilization of Sox9 protein
in chondrocytes through p38 and Smad dependent
mechanisms. Sci Rep. 2016;6:38616.
147. Badlani N, Oshima Y, Healey R, Coutts R,
Amiel D. Use of bone morphogenic protein-7 as a
treatment for osteoarthritis. Clin Orthop Relat Res.
2009;467(12):3221-9.
148. Shi S, Mercer S, Eckert GJ, Trippel SB.
Regulation of articular chondrocyte catabolic
genes by growth factor interaction. J Cell Biochem.
2019;120(7):11127-39.
149. Shi S, Mercer S, Eckert GJ, Trippel SB. Growth
factor transgenes interactively regulate articular
chondrocytes. J Cell Biochem. 2013;114(4):908-19.
150. Li J, Dong S. The Signaling Pathways Involved
in Chondrocyte Differentiation and Hypertrophic
Differentiation. Stem Cells Int. 2016;2016:2470351.
151. Wang Y, Fan X, Xing L, Tian F. Wnt signaling:
a promising target for osteoarthritis therapy. Cell
Commun Signal. 2019;17(1):97.
152. Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang
L, et al. The ECM-cell interaction of cartilage
extracellular matrix on chondrocytes. Biomed Res Int.
2014;2014:648459.
153. Mas-Moruno C, Fraioli R, Rechenmacher F,
Neubauer S, Kapp TG, Kessler H. alphavbeta3- or
alpha5beta1-Integrin-Selective Peptidomimetics
for Surface Coating. Angew Chem Int Ed Engl.
2016;55(25):7048-67.
154. Jansen KA, Atherton P, Ballestrem C.
Mechanotransduction at the cell-matrix interface. Semin Cell Dev Biol. 2017;71:75-83.
155. Hu X, Margadant FM, Yao M, Sheetz MP. Molecular
stretching modulates mechanosensing pathways.
Protein Sci. 2017;26(7):1337-51.
156. Johnstone B, Alini M, Cucchiarini M, Dodge GR,
Eglin D, Guilak F, et al. Tissue engineering for articular
cartilage repair--the state of the art. Eur Cell Mater.
2013;25:248-67.
157. Di Bella C, Duchi S, O’Connell CD, Blanchard
R, Augustine C, Yue Z, et al. In situ handheld threedimensional bioprinting for cartilage regeneration. J
Tissue Eng Regen Med. 2018;12(3):611-21.
158. Khan IM, Gilbert SJ, Singhrao SK, Duance VC,
Archer CW. Cartilage integration: evaluation of the
reasons for failure of integration during cartilage
repair. A review. Eur Cell Mater. 2008;16:26-39.
159. Yang YH, Ard MB, Halper JT, Barabino GA. Type
I collagen-based fibrous capsule enhances integration
of tissue-engineered cartilage with native articular
cartilage. Ann Biomed Eng. 2014;42(4):716-26.
160. Pabbruwe MB, Esfandiari E, Kafienah W, Tarlton
JF, Hollander AP. Induction of cartilage integration by a
chondrocyte/collagen-scaffold implant. Biomaterials.
2009;30(26):4277-86.
161. Yang YK, Ogando CR, Barabino GA. In Vitro
Evaluation of the Influence of Substrate Mechanics on
Matrix-Assisted Human Chondrocyte Transplantation.
J Funct Biomater. 2020;11(1).
162. Gurusinghe S, Strappe P. Gene modification of
mesenchymal stem cells and articular chondrocytes
to enhance chondrogenesis. Biomed Res Int.
2014;2014:369528.
163. Celik E, Bayram C, Denkbas EB. Chondrogenesis
of human mesenchymal stem cells by microRNA
loaded triple polysaccharide nanoparticle system.
Mater Sci Eng C Mater Biol Appl. 2019;102:756-63.
164. Jimenez G, Venkateswaran S, Lopez-Ruiz E,
Peran M, Pernagallo S, Diaz-Monchon JJ, et al. A
soft 3D polyacrylate hydrogel recapitulates the
cartilage niche and allows growth-factor free tissue
engineering of human articular cartilage. Acta
Biomater. 2019;90:146-56.
165. Takada E, Mizuno S. Reproduction of
Characteristics of Extracellular Matrices in Specific
Longitudinal Depth Zone Cartilage within Spherical
Organoids in Response to Changes in Osmotic
Pressure. Int J Mol Sci. 2018;19(5).
166. Yeung P, Cheng KH, Yan CH, Chan BP. Collagen
microsphere based 3D culture system for human
osteoarthritis chondrocytes (hOACs). Sci Rep.
2019;9(1):12453.
167. Udomluck N, Kim SH, Cho H, Park JY, Park H.
Three-dimensional cartilage tissue regeneration
system harnessing goblet-shaped microwells
containing biocompatible hydrogel. Biofabrication.
2019;12(1):015019.
168. Saraswat R, Ratnayake I, Perez EC, Schutz
WM, Zhu Z, Ahrenkiel SP, et al. Micropatterned
Biphasic Nanocomposite Platform for Maintaining
Chondrocyte Morphology. ACS Appl Mater Interfaces.
2020;12(13):14814-24.
169. Yan X, Chen YR, Song YF, Yang M, Ye J, Zhou G, et al.
Scaffold-Based Gene Therapeutics for Osteochondral
Tissue Engineering. Front Pharmacol. 2019;10:1534.
170. Cong L, Zhu Y, Tu G. A bioinformatic analysis
of microRNAs role in osteoarthritis. Osteoarthritis
Cartilage. 2017;25(8):1362-71.
171. Wolock SL, Krishnan I, Tenen DE, Matkins V,
Camacho V, Patel S, et al. Mapping Distinct Bone
Marrow Niche Populations and Their Differentiation
Paths. Cell Rep. 2019;28(2):302-11 e5.
172. Huynh N, Kelly N, Katz D, Pham M, Guilak F.
Single Cell RNA Sequencing Reveals Heterogeneity
of Human MSC Chondrogenesis: Lasso Regularized
Logistic Regression to Identify Gene and Regulatory
Signatures. bioRxiv. 2019:854406
173. Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D
Bioprinting: A Novel Avenue for Manufacturing
Tissues and Organs. Engineering. 2019;5(4):777-94.
174. Derby B. Printing and prototyping of tissues and
scaffolds. Science. 2012;338(6109):921-6.
175. Henrionnet C, Pourchet L, Neybecker P,
Messaoudi O, Gillet P, Loeuille D, et al. Combining
Innovative Bioink and Low Cell Density for the
Production of 3D-Bioprinted Cartilage Substitutes: A
Pilot Study. Stem Cells International. 2020;2020:1-16.
176. Francis SL, Di Bella C, Wallace GG, Choong
PFM. Cartilage Tissue Engineering Using Stem Cells
and Bioprinting Technology-Barriers to Clinical
Translation. Front Surg. 2018;5:70.
177. Ruiz-Cantu L, Gleadall A, Faris C, Segal J,
Shakesheff K, Yang J. Multi-material 3D bioprinting of
porous constructs for cartilage regeneration. Mater Sci
Eng C Mater Biol Appl. 2020;109:110578.
178. Antich C, de Vicente J, Jimenez G, Chocarro C,
Carrillo E, Montanez E, et al. Bio-inspired hydrogel
composed of hyaluronic acid and alginate as a
potential bioink for 3D bioprinting of articular
cartilage engineering constructs. Acta Biomater.
2020;106:114-23.
179. Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A, et al.
Progress in Articular Cartilage Tissue Engineering:
A Review on Therapeutic Cells and Macromolecular
Scaffolds. Macromol Biosci. 2020;20(2):e1900278.
180. Semba J, Mieloch A, Rybka J. Introduction
to the state-of-the-art 3D bioprinting methods,
design, and applications in orthopedics. Bioprinting.
2019;18:e00070