Orthobiologics: Current role in Orthopedic Surgery and Traumatology



Department of Orthopedic Surgery, La Paz University Hospital, Madrid, Spain


Orthobiologics are organic and synthetic materials that help in the cure of musculo-skeletal problems and are utilized
in Orthopaedic Surgery, both in and out of the surgical theater, to augment the possibilities of curing bone and soft
tissue lesions. Taking into account that their effect is frequently multifactorial and, in some occasions not entirely comprehended,
together with the insufficient clinical information, orthobiologics should be scrupulously assessed against
other secure and clinically accepted options. The fundamental orthobiologics today ready for use in Orthopedic Surgery
are the following: osseous hollow fillers, extracellular matrix (ECM) substances, platelet-rich plasma (PRP), bone
morphogenetic protein-2 (BMP-2), bone marrow aspirate (BMA), bone marrow aspirate concentrate (BMAC), and mesenchymal
stem cells (MSCs). It is predictable that in the time to come we will have more secure and more efficacious
orthobiologics. Meanwhile, it is paramount that orthopedic surgeons have appropriate information of contemporary
orthobiologics (biological adjuvants) so that they can utilize them correctly.
Level of evidence: III


Main Subjects

  1. Rodeo SA, Bedi A. 2019-2020 NFL and NFL Physician Society Orthobiologics Consensus Statement. Sport Health 2019; 12(1):58-60.
  2. Rodriguez-Merchan EC. Intra-articular injections of hyaluronic acid and other drugs in the knee joint. HSS J. 2013; 9(2):180-2.
  3. Rodriguez-Merchan EC. Intra-articular injections of mesenchymal stem cells for knee osteoarthritis. Am J Orthop (Belle Mead NJ). 2014; 43(12):E282-91.
  4. Liddle AD, Rodriguez-Merchan EC. Platelet-rich plasma in the treatment of patellar tendinopathy: A systematic review. Am J Sports Med. 2015; 43(10):2583-90.
  5. Bauer TW. Stem cell therapy for knee pain—what exactly are we injecting, and why? J Bone Joint Surg Am. 2016; 98(18):1509-10.
  6. Rodeo SA. Biologic approaches in sports medicine: Potential, perils, and paths forward. Am J Sports Med. 2016; 44(7):1657-9.
  7. Calcei JC, Rodeo SA. Orthobiologics for bone healing. Clin Sports Med 2019; 38(1):79-95.
  8. Keyhani S, Soleymanha M, Verdonk R, Abbasian M. Autogenous osteochondral grafting for treatment of knee osteochondritis dissecans: A case series study. Arch Bone Jt Surg 2020; 8(3):426-31.
  9. Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 2007; 38(Suppl 1):S75-80.
  10. Sagi HC, Young ML, Gerstenfeld L, Einhorn TA, Tornetta P. Qualitative and quantitative differences between bone grafts obtained from the medullary canal (with a Reamer/Irrigator/Aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am 2012; 94(23):2128-35.
  11. Bray CC, Walker CM, Spence DD. Orthobiologics in pediatric sports medicine. Orthop Clin North Am 2017; 48(3):333-42.
  12. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002; 84(3):454-64.
  13. Nauth A, Lane J, Watson JT, Giannoudis P. Bone graft substitution and augmentation. J Orthop Trauma 2015; 29(Suppl 12):S34-8.
  14. Tiedeman JJ, Connolly JF, Strates BS, Lippiello L. Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clin Orthop Relat Res 1991;268:294-302.
  15. Tiedeman JJ, Garvin KL, Kile TA, Connolly JF. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 1995; 18(12):1153-8.
  16. Desai P, Hasan SM, Zambrana L, Hegde V, Saleh A, Cohn MR, et al. Bone mesenchymal stem cells with growth factors successfully treat nonunions and delayed unions. HSS J 2015; 11(2):104-11.
  17. Lareau CR, Hsu AR, Anderson RB. Return to play in national football league players after operative Jones fracture treatment. Foot Ankle Int 2016; 37(1):8-16.
  18. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: The Bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8(4):114-24.
  19. Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 2005; 87(7):1430-7.
  20. Schottel PC, Warner SJ. Role of bone marrow aspirate in orthopedic trauma. Orthop Clin North Am 2017; 48(3):311-21.
  21. Vériter S, André W, Aouassar N, Poirel HA, Lafosse A, Docquier PL, et al. Human adipose-derived mesenchymal stem cells in cell therapy: Safety and feasibility in different “hospital exemption” clinical applications. PLoS One. 2015; 10(10):e0139566.
  22. Şovrea AS, Boşca AB, Constantin AM, Dronca E, Ilea A. State of the art in human adipose stem cells and their role in therapy. Rom J Morphol Embryol. 2019; 60(1):7-31.
  23. Malhotra R, Kumar V, Garg B, Singh R, Jain V, Coshic P, et al. Role of autologous platelet-rich plasma in treatment of long-bone nonunions: a prospective study. Musculoskelet Surg 2015; 99(3):243-8.
  24. Duramaz A, Ursavas‚ HT, Bilgili MG, Bayrak A, Bayram B, Avkan MC, et al. Platelet-rich plasma versus exchange intramedullary nailing in treatment of long bone oligotrophic nonunions. Eur J Orthop Surg Traumatol 2018; 28(1):131-7.
  25. Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, et al. BMP-2 evaluation in surgery for tibial trauma-allograft (BESTT-ALL) study group. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 2006; 88(7):1431-41.
  26. Giannoudis PV, Kanakaris NK, Dimitriou R, Gill I, Kolimarala V, Montgomery RJ. The synergistic effect of autograft and BMP-7 in the treatment of atrophic nonunions. Clin Orthop Relat Res 2009; 467(12):3239-48.
  27. Kamal AF, Siahaan OSH, Fiolin J. Various dosages of BMP-2 for management of massive bone defect in Sprague Dawley rat. Arch Bone Jt Surg. 2019; 7(6):498-505.
  28. Gross RH. The use of bone grafts and bone graft substitutes in pediatric orthopaedics: An overview. J Pediatr Orthop 2012; 32(1):100-5.
  29. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 2010; 25(2):404-14.
  30. Almirol EA, Chi LY, Khurana B, Hurwitz S, Bluman EM, Chiodo C, et al. Short-term effects of teriparatide versus placebo on bone biomarkers, structure, and fracture healing in women with lower extremity stress fractures: a pilot study. J Clin Transl Endocrinol 2016; 5:7-14.
  31. Hadjiargyrou M, Komatsu DE. The therapeutic potential of microRNAs as orthobiologics for skeletal fractures. J Bone Mineral Res 2019; 34(5):797-809.
  32. Southworth TM, Naveen NB, Nwachukwu BU, Cole BJ, Frank RM. Orthobiologics for focal articular cartilage defects. Clin Sports Med 2019; 38(1):109-122.
  33. Magnussen RA, Dunn WR, Carey JL, Spindler KP. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 2008; 466(4):952–62.
  34. Wang KC, Frank RM, Cotter EJ, Christian DR, Cole BJ. Arthroscopic management of isolated tibial plateau defect with microfracture and micronized allogeneic cartilage-platelet-rich plasma adjunct. Arthrosc Tech 2017; 6(5):e1613-e1618.
  35. Frank RM, Lee S, Levy D, Poland S, Smith M, Scalise N, et al. Osteochondral allograft transplantation of the knee: Analysis of failures at 5 years. Am J Sports Med 2017; 45(4):864-74.
  36. Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res 2013; 471(1):231-7.
  37. Sherman BJ, Chahla J, Glowney J, Frank RM. The role of orthobiologics in the management of osteoarthritis and focal cartilage defects. Orthopedics 2019; 42(2):66-73.
  38. Chahla J, Kennedy MI, Aman ZS, LaPrade RF. Ortho-Biologics for ligament repair and reconstruction. Clin Sports Med 2019; 38(1):97-107.
  39. Di Matteo B, Kon E, Filardo G. Intra-articular platelet-rich plasma for the treatment of osteoarthritis. Ann Transl Med 2016; 4(3):63.
  40. Eirale C, Mauri E, Hamilton B. Use of platelet rich plasma in an isolated complete medial collateral ligament lesion in a professional football (soccer) player: A case report. Asian J Sports Med 2013;4(2):158–62.
  41. Podesta L, Crow SA, Volkmer D, Bert T, Yocum LA. Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. Am J Sports Med 2013; 41(7):1689-94.
  42. Dines JS, Williams PN, ElAttrache N, Conte S, Tomczyk T, Osbahr DC, et al. Platelet-rich plasma can be used to successfully treat elbow ulnar collateral ligament insufficiency in high-level throwers. Am J Orthop (Belle Mead NJ) 2016; 45(5):296-300.
  43. Rebolledo BJ, Dugas JR, Bedi A, Ciccotti MG, Altchek DW, Dines JS. Avoiding Tommy John Surgery: What are the alternatives? Am J Sports Med. 2017; 45(13):3143-8.
  44. Chirichella PS, Jow S, Iacono S, Wey HE, Malanga GA. Treatment of knee meniscus pathology: Rehabilitation, surgery, and orthobiologics. PM&R. 2019; 11(3):292-308.
  45. Vangsness CT Jr, Farr J 2nd, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014; 96(2):90-8.
  46. Dragoo JL, Meadows MC. The use of biologics for the elbow: A critical analysis review. J Shoulder Elbow Surg 2019; 28(11):2053-60.
  47. McInnis KC, Chen ET, Finnoff JT, Roh EY, Borg Stein J. Orthobiologics for the hip region: A narrative review. PM R. 2020; 12(10):1045-54.
  48. Dekker TJ, White P, Adams SB. Efficacy of a cellular allogeneic bone graft in foot and ankle arthrodesis procedures. Foot Ankle Clin. 2016; 21(4):855-61.
  49. Sun H, Lu PP, Zhou PH, Sun SW, Zhang HT, Liu YJ, et al. Recombinant human platelet-derived growth factor-BB versus autologous bone graft in foot and ankle fusion: A systematic review and meta-analysis. Foot Ankle Surg. 2017; 23(1):32-9.
  50. Greene AC, Hsu WK. Orthobiologics in minimally invasive lumbar fusion. J Spine Surg 2019; 5(Suppl 1):S11-S18.