1. Gibson JNA, Waddell G. Surgery for degenerative
lumbar spondylosis: updated Cochrane Review. J
Spine 2005;30(20):2312-20.
2. Gaines R. The use of pedicle-screw internal fixation
for the operative treatment of spinal disorders. J Bone
and Joint Surgery. 2000;82(10):1458-76.
3. Cappuccino A, Cornwall GB, Turner AW, Fogel GR,
Duong HT, Kim KD, et al. Biomechanical analysis and
review of lateral lumbar fusion constructs. J Spine.
2010;35(26S):S361-S7.
4. Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation
strength: pullout versus insertional torque. The spine
journal. 2004;4(5):513-8.
5. Panjabi MM. Clinical spinal instability and low
back pain. J electromyography kinesiology. 2003;
13(4):371-9.
6. Boucher H. A method of spinal fusion. J bone joint
surgery British volume. 1959;41(2):248-59.
7. Roy-Camille R, Saillant G, Mazel C. Internal fixation of
the lumbar spine with pedicle screw plating. J Clinical
orthopaedics related research. 1986(203):7-17.
8. Chen C-S, Chen W-J, Cheng C-K, Jao S-HE, Chueh S-C,
Wang C-C. Failure analysis of broken pedicle screws
on spinal instrumentation. J Medical engineering
physics. 2005;27(6):487-96.
9. Abshire BB, McLain RF, Valdevit A, Kambic HE.
Characteristics of pullout failure in conical and
cylindrical pedicle screws after full insertion and
back-out. The Spine Journal. 2001;1(6):408-14.
10.Kim Y-Y, Choi W-S, Rhyu K-W. Assessment of pedicle
screw pullout strength based on various screw designs
and bone densities—an ex vivo biomechanical study.
The Spine Journal. 2012;12(2):164-8.
11.Vishnubhotla S, McGarry WB, Mahar AT, Gelb DE. A
titanium expandable pedicle screw improves initial
pullout strength as compared with standard pedicle
screws. The Spine Journal. 2011;11(8):777-81.
12.Einafshar M, Hashemi A, Mojgani P. Evalution of
primary stability of spinal pedicle screws using
modal analysis, conventional pull-out and insertion
torque. Iranian Journal of Biomedical Engineering.
2020;14(3):169-77 .
13.Hitchon PW, Brenton MD, Coppes JK, From AM, Torner
JC. Factors affecting the pullout strength of selfdrilling and self-tapping anterior cervical screws. J
Spine 2003;28(1):9-13.
14.Kubiak AJ, Lindqvist-Jones K, Dearn KD, Shepherd
DE. Comparison of the mechanical properties of two
designs of polyaxial pedicle screw. J Engineering
Failure Analysis. 2019;95:96-106.
15.Lill CA, Schneider E, Goldhahn J, Haslemann A, Zeifang
F. Mechanical performance of cylindrical and dual core
pedicle screws in calf and human vertebrae. Archives
of orthopaedic trauma surgery. 2006;126(10):686-94.
16.Seng WRD, Chou SM, Siddiqui SS, Oh JY. Pedicle Screw
Designs in Spinal Surgery: Is There a Difference? A
Biomechanical Study on Primary and Revision PullOut Strength. J Spine. 2019;44(3):E144-E9.
17.Seng WR, Chou S, Siddiqui S, Oh J. Pedicle Screw
Designs in Spinal Surgery. J Spine. 2019;44(3).
18.Yamaguchi Y, Shiota M, Munakata M, Kasugai S, Ozeki
M. Effect of implant design on primary stability using
torque-time curves in artificial bone. International
journal of implant dentistry. 2015;1(1):21.
19.Krijnen MR, Mensch D, van Dieen JH, Wuisman PI,
Smit TH. Primary spinal segment stability with a
stand-alone cage: in vitro evaluation of a successful
goat model. Acta Orthopaedica. 2006;77(3):454-61.
20.ASTM F543. Standard specification and test methods
for metallic medical bone screws. ASTM International,
West Conshohocken, PA; 2017.
21.ASTM F1717. Standard test methods for spinal
implant constructs in a vertebrectomy model. ASTM
International, West Conshohocken, PA; 2014.
22.Yang S-C, Liu P-H, Tu Y-K. Pullout evaluation of
sawbone experiment in different types of pedicle
screws combined with bone cement augmentation
for severe osteoporotic spine. J Acta of bioengineering
biomechanics. 2018;20(2).
23.Einafshar M, Hashemi A, van Lenthe GH. Homogenized
finite element models can accurately predict
screw pull-out in continuum materials, but not in
porous materials. J Computer Methods Programs in
Biomedicine. 2021:105966.
24.Hashemi A, Bednar D, Ziada S. Pullout strength of
pedicle screws augmented with particulate calcium
phosphate: an experimental study. The spine journal.
2009;9(5):404-10.
25.Sandén B, Olerud C, Larsson S, Robinson Y. Insertion
torque is not a good predictor of pedicle screw
loosening after spinal instrumentation: a prospective
study in 8 patients. Patient safety in surgery.
2010;4(1):14.
26.Ricci WM, Tornetta III P, Petteys T, Gerlach D, Cartner
J, Walker Z, et al. A comparison of screw insertion
torque and pullout strength. J orthopaedic trauma.
2010;24(6):374-8.
27.Brasiliense LB, Lazaro BC, Reyes PM, Newcomb
AG, Turner JL, Crandall DG, et al. Characteristics of
immediate and fatigue strength of a dual-threaded
pedicle screw in cadaveric spines. The Spine Journal.
2013;13(8):947-56.
28.Akpolat YT, Inceoglu S, Kinne N, Hunt D, Cheng WK.
Fatigue performance of cortical bone trajectory screw
compared with standard trajectory pedicle screw. J
Spine. 2016;41(6):E335-E41.
29.Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS,
Goel VK, Demetropoulos CK, et al. Biomechanical
evaluation of the pedicle screw insertion depth effect
on screw stability under cyclic loading and subsequent
pullout. J Clinical Spine Surgery. 2015;28(3):E133-E9.
30.Steiner JA, Christen P, Affentranger R, Ferguson SJ, van Lenthe GH. A novel in silico method to quantify
primary stability of screws in trabecular bone. J
Orthopaedic Research. 2017;35(11):2415-24.
31.Demir T, Basgül C. The pullout performance of pedicle
screws: Springer; 2015.
32.Gehrke SA, Marin GW. Biomechanical evaluation
of dental implants with three different designs:
Removal torque and resonance frequency analysis in
rabbits. Annals of Anatomy-Anatomischer Anzeiger.
2015;199:30-5.
33.Javed F, Ahmed HB, Crespi R, Romanos GE. Role of
primary stability for successful osseointegration
of dental implants: factors of influence and
evaluation. Interventional Medicine Applied Science.
2013;5(4):162-7.
34.Einafshar M, Hashemi A, van Lenthe H. Can periotest®
quantify spinal pedicle screw stability in agreement
with pull-out test and acoustic modal analysis? .
26th Congress of European Society of Biomechanics;
11/07/20212021. p. 376.
35.Vidyasagar L, Salms G, Apse P, Teibe U. Investigation of
initial implant stability with different dental implant
designs. A pilot study in pig ribs using resonance
frequency analysis. Stomatologija. 2004;6(2):35-9.
36.Muhamed A, Georges C, Mustafa M, Abdulgani A.
Implant stability: methods and recent advances.
Journal of Dental Medical Sciences. 2017;16(8):13-23.
37.Rondon A, Sariali E, Vallet Q, Grimal Q. Modal analysis
for the assessment of cementless hip stem primary
stability in preoperative THA planning. J Medical
engineering physics. 2017;49:79-88.
38.Leuridan S, Goossens Q, Pastrav L, Roosen J, Mulier M,
Denis K, et al. Determination of replicate composite
bone material properties using modal analysis. J
the mechanical behavior of biomedical materials.
2017;66:12-8.
39.Rodrigues JD, Lopes H, De Melo F, Simoes J.
Experimental modal analysis of a synthetic composite
femur. Experimental mechanics. 2004;44(1):29-32.
40.Goossens Q, Vancleef S, Leuridan S, Pastrav LC, Mulier
M, Desmet W, et al. The Use of a Vibro-Acoustic
Based Method to Determine the Composite Material
Properties of a Replicate Clavicle Bone Model. Journal
of Functional Biomaterials. 2020;11(4):69.
41.Einafshar M, Mojgani P, Kazemi M, Hashemi A. Initial
stability analysis of spine pedicular screws using
modal analysis method. The Biennial International
Conference on Experimetnal Solid Mechanics2020.
42.Einafshar M, Hashemi A. New Biomechanical
Approach for Evaluation of Spinal Pedicle Screw
Fixation Stability. Journal of Medical and Biological
Engineering. 2021;41:447-55.
43.Leuridan S, Goossens Q, Pastrav L, Roosen J, Mulier M,
Denis K, et al. Determination of replicate composite
bone material properties using modal analysis.
Journal of the mechanical behavior of biomedical
materials. 2017;66:12-8.
44.Henyš P, Leuridan S, Goossens Q, Mulier M, Pastrav L,
Desmet W, et al. Modal frequency and shape curvature
as a measure of implant fixation: A computer study
on the acetabular cup. J Medical engineering physics.
2018;60:30-8.
45.Goossens Q, Pastrav L, Roosen J, Mulier M, Desmet
W, Vander Sloten J, et al. Acoustic analysis to
monitor implant seating and early detect fractures
in cementless THA: An in vivo study. Journal of
Orthopaedic Research. 2020:1-10.
46.Newland DE, Ungar EE. Mechanical vibration analysis
and computation. Acoustical Society of America;
1990.
47.Ritto T, Sampaio R, Aguiar R. Uncertain boundary
condition Bayesian identification from experimental
data: A case study on a cantilever beam. Mechanical
Systems Signal Processing. 2016;68:176-88.
48.Einafshar M, Hashemi A. New method for
biomechanical investigation of orthopedic bone
screws with modal analysis. 25th Congress of
European Society of Biomechanics. 2019:622.
49.Comuzzi L, Iezzi G, Piattelli A, Tumedei M. An In Vitro
Evaluation, on Polyurethane Foam Sheets, of the
Insertion Torque (IT) Values, Pull-Out Torque Values,
and Resonance Frequency Analysis (RFA) of NanoShort
Dental Implants. J Polymers. 2019;11(6):1020.
50.Kahraman S, Bal B, Asar N, Turkyilmaz I, Tözüm T.
Clinical study on the insertion torque and wireless
resonance frequency analysis in the assessment
of torque capacity and stability of self-tapping
dental implants. Journal of Oral Rehabilitation.
2009;36(10):755-61.
51.ASTM F1839. Standard specification for rigid
polyurethane foam for use as a standard material for
testing orthopaedic devices and instruments. ASTM
International, West Conshohocken, PA; 2016.
52.Einafshar M, Rouhi G, Aghighi M, Mortazavi SJ.
Alteration of the Thrust Force Versus Number of
Drill Bit Usage in Cortical Bone Drilling. Journal of
Orthopedic Spine Trauma. 2016;2:1-5.
53.Einafshar M, Shahrezaee M, Shahrezaee MH,
Sharifzadeh SR. Biomechanical Evaluation of
Temperature Rising and Applied Force in Controlled
Cortical Bone Drilling: an Animal in Vitro Study. The
Archives of Bone Joint Surgery. 2020;8(5):605-12.
54.Muhamed A, Georges C, Mustafa M, Abdulgani A.
Implant stability: methods and recent advances. J
Dental Medical Sciences. 2017;16(8):13-23.
55.Einafshar M, Hashemi A, van Lenthe H. The role
of interface stresses on implant stability. An
experimental- computational approach. 26th
Congress of European Society of Biomechanics;
11/07/2021; Milan, Italy2021. p. 420.
56.Osterhoff G, Morgan EF, Shefelbine SJ, Karim
L, McNamara LM, Augat P. Bone mechanical
properties and changes with osteoporosis. J Injury.
2016;47:S11-S20.
57.Nakashima D, Ishii K, Matsumoto M, Nakamura M,
Nagura T. A study on the use of the Osstell apparatus
to evaluate pedicle screw stability: An in-vitro study
using micro-CT. J PloS one. 2018;13(6):e0199362.