1. Huiskes R, Chao E. A survey of finite element analysis
in orthopedic biomechanics: the first decade. J.
Biomech. 1983;16(6):385-409.
2. Brekelmans W, Poort H, Slooff T. A new method to
analyse the mechanical behaviour of skeletal parts.
Acta Orthop. Scand. 1972;43(5):301-17.
3. Poelert S, Valstar E, Weinans H, Zadpoor AA. Patientspecific
finite element modeling of bones. Proc Inst
Mech Eng H. 2013;227(4):464-78.
4. Keyak J, Lee I, Skinner H. Correlations between
orthogonal mechanical properties and density of
trabecular bone: use of different densitometric
measures. J. Biomed. Mater. Res. A. 1994;28(11):
1329-36.
5. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of
femoral fracture load using automated finite element
modeling. J. Biomech. 1997;31(2):125-33.
6. Sas A, Ohs N, Tanck E, van Lenthe GH. Nonlinear voxelbased
finite element model for strength assessment
of healthy and metastatic proximal femurs. Bone Rep.
2020:100263.
7. Benca E, Synek A, Amini M, Kainberger F, Hirtler
L, Windhager R, et al. QCT-based finite element
prediction of pathologic fractures in proximal femora
with metastatic lesions. Sci. Rep. 2019;9(1):1-9.
8. Mirzaei M, Keshavarzian M, Alavi F, Amiri P,
Samiezadeh S. QCT-based failure analysis of proximal
femurs under various loading orientations. Med Biol
Eng Comput. 2015;53(6):477-86.
9. Keyak J, Kaneko T, Tehranzadeh J, Skinner H.
Predicting proximal femoral strength using structural
engineering models. Clin. Orthop. Relat. Res. 2005;
437:219-28.
10. Costa M, Eltes P, Lazary A, Varga P, Viceconti M, Dall’Ara
E. Biomechanical assessment of vertebrae with
lytic metastases with subject-specific finite element
models. J Mech Behav Biomed. 2019;98:268-90.
11. Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P. QCTbased
finite element models predict human vertebral
strength in vitro significantly better than simulated
DEXA. Osteoporos. Int. 2012;23(2):563-72.
12. Mosleh H, Rouhi G, Ghouchani A, Bagheri N. Prediction
of fracture risk of a distal femur reconstructed with
bone cement: QCSRA, FEA, and in-vitro cadaver tests.
Phys Eng Sci Med. 2020;43(1):269-77.
13. Ghouchani A, Rouhi G, Ebrahimzadeh MH. Investigation
on distal femoral strength and reconstruction failure
following curettage and cementation: In-vitro tests
with finite element analyses. Comput. Biol. Med.
2019:103360.
14. Derikx LC, van Aken JB, Janssen D, Snyers A, van der
Linden YM, Verdonschot N, et al. The assessment of
the risk of fracture in femora with metastatic lesions:
comparing case-specific finite element analyses with
predictions by clinical experts. J Bone Joint Surg Br.
2012;94(8):1135-42.
15. Sternheim A, Giladi O, Gortzak Y, Drexler M, Salai M,
Trabelsi N, et al. Pathological fracture risk assessment
in patients with femoral metastases using CT-based
finite element methods. A retrospective clinical study.
Bone. 2018;110:215-20.
16. Ghouchani A, Rouhi G, Ebrahimzadeh MH. Post
operative fracture risk assessment following tumor
curettage in the distal femur: a hybrid in vitro
and in silico biomechanical approach. Sci. Rep.
2020;10(1):1-13.
17. Hirn M, de Silva U, Sidharthan S, Grimer RJ, Abudu A,
Tillman RM, et al. Bone defects following curettage do
not necessarily need augmentation: A retrospective
study of 146 patients. Acta Orthop. 2009;80(1):4-8.
18. Mirzaei M, Keshavarzian M, Naeini V. Analysis of
strength and failure pattern of human proximal femur
using quantitative computed tomography (QCT)-
based finite element method. Bone. 2014;64:108-14.