1. Lee S, Novitskaya EE, Reynante B, Vasquez J, Urbaniak
R, Takahashi T, et al. Impact testing of structural
biological materials. Mater Sci Eng C Mater Biol Appl.
2011; 31(4):730-9.
2. Verteramo A, Seedhom B. Effect of a single impact
loading on the structure and mechanical properties of
articular cartilage. J Biomech. 2007; 40(16):3580-9.
3. ASTM American Society for Testing and Materials.
Standard test methods for determining the Izod
pendulum impact resistance of plastics. ASTM
international; 2010.
4. Mills NJ. The mechanism of brittle fracture in notched
impact tests on polycarbonate. J Mater Sci. 1976;
11(2):363-75.
5. Kurishita H, Kayano H, Narui M, Yamazaki M, Kano Y,
Shibahara I. Effects of V-Notch Dimensions on Charpy
Impact Test Results for Differently Sized Miniature
Specimens of Ferritic Steel. Mater Trans. 1993;
34(11):1042-1052.
6. Burgin LV, Aspden RM. A drop tower for controlled
impact testing of biological tissues. Med Eng Phys.
2007; 29(4):525-30.
7. Burgin LV, Aspden RM. Impact testing to determine
the mechanical properties of articular cartilage in
isolation and on bone. J Mater Sci Mater Med. 2008;
19(2):703-11.
8. Cooper C, Atkinson EJ, MichaelO’Fallon W, and Melton
III JL. Incidence of clinically diagnosed vertebral
fractures: a population- based study in Rochester,
Minnesota. JBMR. 1992; 7(2):221–227.
9. Myers ER, Wilson SE. Biomechanics of osteoporosis
and vertebral fracture. Spine J. 1997; 22(24):25S–31S.
10. Dudli S, Haschtmann D, Ferguson SJ. Prior storage
conditions and loading rate affect the in vitro fracture
response of spinal segments under impact loading. J
Biomech.2011; 44(13):2351-5.
11. Dudli S, Haschtmann D, Ferguson SJ. Fracture of the
vertebral endplates, but not equienergetic impact
load, promotes disc degeneration in vitro. J Orthop.
2012; 30(5):809-16.
12. Wilson S, Alkalay RN, Myers BR. Effect of the
degenerative state of the intervertebral disk on the
impact characteristics of human spine segments.
Front bioeng biotechnol. 2013; 1:16.
13. Kasra M, Shirazi-Adl A, Drouin G. Dynamics of human
lumbar intervertebral joints. Experimental and finiteelement
investigations. Spine J. 1992; 17(1):93-102.
14. Nikkhoo M, Wang J-L, Parnianpour M, El-Rich M, Khalaf
K. Biomechanical response of intact, degenerated and
repaired intervertebral discs under impact loading–
Ex-vivo and In-Silico investigation. J Biomech. 2018;
70:26-32.
15. Banthia N, Mindess S, Bentur A, Pigeon M. Impact
testing of concrete using a drop-weight impact
machine. Exp Mech. 1989; 29(1):63-9.
16. Duenwald SE, Vanderby R, Lakes RS. Stress relaxation
and recovery in tendon and ligament: experiment and
modeling. Biorheology. 2010; 47(1):1-4.
17. Kemper A, McNally C, Manoogian S, McNeely D, Duma
S, editors. Stiffness properties of human lumbar
intervertebral discs in compression and the influence
of strain rate. Proceedings of the 20th Enhanced
Safety of Vehicles Conference 2013.
18. Yingling VR, Callaghan JP, McGill SM. Dynamic loading
affects the mechanical properties and failure site of
porcine spines. Clin Biomech (Bristol, Avon). 1997;
12(5):301-5.
19. Jamison D, Cannella M, Pierce EC, Marcolongo MS. A
comparison of the human lumbar intervertebral disc
mechanical response to normal and impact loading
conditions. J Biomech Eng. 2013; 135(9).