Current Concepts in Scaffolding for Bone Tissue Engineering

Document Type : CURRENT CONCEPTS REVIEW

Authors

1 Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bone
tissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials and
functional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissue
engineering. While osteoconductive materials such as hydroxyapatite and tricalcium phosphate ceramics as well
as some biodegradable polymers are suggested, much interest has recently focused on the use of osteoinductive
materials like demineralized bone matrix or bone derivatives. However, physiochemical modifications in terms of
porosity, mechanical strength, cell adhesion, biocompatibility, cell proliferation, mineralization and osteogenic
differentiation are required. This paper reviews studies on bone tissue engineering from the biomaterial point of view
in scaffolding.

Keywords

Main Subjects


1. Amin S, Achenbach SJ, Atkinson EJ, Khosla S, Melton
LJ 3rd. Trends in Fracture incidence: a populationbased
study over 20 years. J Bone Miner Res. 2014;
29(3):581-9.
2. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical
properties and the hierarchical structure of bone.
Med Eng Phys. 1998; 20(2):92-102.
3. Weiner S, Traub W. Bone structure: from angstroms to
microns. FASEB J. 1992; 6(3):879-85.
4. Kokubo T, Kim HM, Kawashita M. Novel bioactive
materials with different mechanical properties.
Biomaterials. 2003; 24(13):2161-75.
5. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP,
Badylak SF. Macrophage phenotype and remodeling
outcomes in response to biologic scaffolds with and
without a cellular component. Biomaterials. 2009;
30(8):1482-91.
6. Hutmacher DW. Scaffolds in tissue engineering bone
and cartilage. Biomaterials. 2000; 21(24):2529-43.
7. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering:
a review in bone biomimetics and drug delivery
strategies. Biotechnol Prog. 2009; 25(6):1539-60.
8. Vacanti CA. The history of tissue engineering. J Cell
Mol Med. 2006; 10(3):569-76.
9. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK,
Basu D. Orthopaedic applications of bone graft &
graft substitutes: a review. Indian J Med Res. 2010;
132(1):15-30.
10. Perry CR. Bone repair techniques, bone graft, and
bone graft substitutes. Clin Orthop Relat Res. 1999;
360(10):71-86.
11. Dhandayuthapani B, Yoshida Y, Meakawa T, Kumar DS.
Polymeric scaffolds in tissue engineering application:
a review. Int J Polymer Sci. 2011; 2011(19):290602.
12. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen
KT. A review of materials, fabrication methods, and
strategies used to enhance bone regeneration in
engineered bone tissues. J Biomed Mater Res B Appl
Biomater. 2008; 85(2):573-82.
13. Alam S, Ueki K, Marukawa K, Ohara T, Hase
T, Takazakura D, et al. Expression of bone
morphogenetic protein 2 and fibroblast growth
factor 2 during bone regeneration using different
implant materials as an onlay bone graft in rabbit
mandibles. Oral Surg Oral Med Oral Pathol Oral
Radiol Endod. 2007; 103(1):16-26.
14. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a
21st century solution to surgical reconstruction. Ann
Thorac Surg. 2001; 72(2):577-91.
15. Meyer U, Wiesmann HP. Bone and cartilage
engineering. New York: Springer Science & Business
Media; 2006.
16. Ma PX. Scaffolds for tissue fabrication. Mater Today.
2004; 7(5):30-40.
17. Kretlow JD, Mikos AG. Mineralization of synthetic
polymer scaffolds for bone tissue engineering. Tissue
Eng. 2007; 13(5):927-38.
18. Moradi A, Dalilottojari A, Pingguan-Murphy B,
Djordjevic I. Fabrication and characterization of
elastomeric scaffolds comprised of a citric acid-based
polyester/hydroxyapatite microcomposite. Mater
Design. 2013; 50:446-50.
19. Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati‐
Hashjin M, Osman A, Azuan N. Polycaprolactone/
starch composite: Fabrication, structure, properties,
and applications. J Biomed Mater Res A. 2015;
103(7):2482-98.
20. Ghavimi SA, Ebrahimzadeh MH, Shokrgozar MA,
Solati-Hashjin M, Osman NA. Effect of starch content
on the biodegradation of polycaprolactone/starch
composite for fabricating in situ pore-forming
scaffolds. Polymer Test. 2015; 43(2):94-102.
21. Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG. Osteoblast
function on synthetic biodegradable polymers. J
Biomed Mater Res. 1994; 28(12):1445-53.
22. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS.
Orthopaedic applications for PLA-PGA biodegradable
polymers. Arthroscopy. 1998; 14(7):726-37.
23. Wang M. Developing bioactive composite materials
for tissue replacement. Biomaterials. 2003; 24(13):
2133-51.
24. Yan J, Li J, Runge MB, Dadsetan M, Chen Q, Lu L, et al.
Cross-linking characteristics and mechanical properties
of an injectable biomaterial composed of polypropylene
fumarate and polycaprolactone co-polymer. J Biomater
Sci Polym Ed. 2011; 22(4-6):489-504.
25. Cheung HY, Lau KT, Lu TP, Hui D. A critical review
on polymer-based bio-engineered materials for
scaffold development. Composites B Eng. 2007;
38(3):291-300.
26. Bose S, Roy M, Bandyopadhyay A. Recent advances in
bone tissue engineering scaffolds. Trends Biotechnol.
2012; 30(10):546-54.
27. Short AR, Koralla D, Deshmukh A, Wissel B, Stocker B,
Calhoun M, et al. Hydrogels that allow and facilitate
bone repair, remodeling, and regeneration. J Mater
Chem B. 2015; 3(40):7818-30.
28. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE.
Biomaterials science: an introduction to materials in
medicine. Massachusetts: Academic Press; 2004.
29. Lee SH, Shin H. Matrices and scaffolds for delivery
of bioactive molecules in bone and cartilage tissue
engineering. Adv Drug Deliv Rev. 2007; 59(4):339-59.
30. Moradi A. Development of bovine cartilage
extracellular matrix as a potential scaffold for
chondrogenic induction of human dermal fibroblasts.
[Doctoral Dissertation]. Kuala Lumpur, Malaysia:
University of Malaya; 2015.
31. Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP,
Khalil AA, et al. Chondrogenic potential of physically
treated bovine cartilage matrix derived porous
scaffolds on human dermal fibroblast cells. J Biomed
Mater Res A. 2016; 104(1):245-56.
32. Pei M, Li J, Shoukry M, Zhang Y. A review of
decellularized stem cell matrix: a novel cell expansion
system for cartilage tissue engineering. Eur Cell Mater.
2011; 22(333):343.
33. Yang Q, Peng J, Lu SB, Guo QY, Zhao B, Zhang L, et al.
Evaluation of an extracellular matrix-derived acellular
biphasic scaffold/cell construct in the repair of a large
articular high-load-bearing osteochondral defect in a
canine model. Chin Med J. 2011; 124(23):3930-8.
34. Koob S, Torio-Padron N, Stark GB, Hannig C,
Stankovic Z, Finkenzeller G. Bone formation and
neovascularization mediated by mesenchymal stem
cells and endothelial cells in critical-sized calvarial
defects. Tissue Eng Part A. 2010; 17(3-4):311-21.
35. Cowley SP, Anderson LD. Hernias through donor sites
for iliac-bone grafts. J Bone Joint Surg Am. 1983;
65(7):1023-5.
36. Kao ST, Scott DD. A review of bone substitutes. Oral
Maxillofac Surg Clin North Am. 2007; 19(4):513-21.
37. Rodrí􀆴guez-Fuentes N, Reynoso-Ducoing O, Rodrí􀆴guez-
Hernández A, Ambrosio-Hernández JR, Piña-Barba
MC, Zepeda-Rodrí􀆴guez A, et al. Isolation of human
mesenchymal stem cells and their cultivation on the
porous bone matrix. J Vis Exp. 2015; 9(96):e51999.
38. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI.
Hyaluronic acid‐based polymers as cell carriers for
tissue‐engineered repair of bone and cartilage. J
Orthop Res. 1999; 17(2):205-13.
39. Yarlagadda PK, Chandrasekharan M, Shyan JY.
Recent advances and current developments in tissue
scaffolding. Biomed Mater Eng. 2005; 15(3):159-77.
40. Liu X, Ma PX. Polymeric scaffolds for bone tissue
engineering. Ann Biomed Eng. 2004; 32(3):477-86.
41. Biltz RM, Pellegrino ED. The chemical anatomy of
bone: I. A comparative study of bone composition
in sixteen vertebrates. J Bone Joint Surg Am. 1969;
51(3):456-66.
42. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of
surface reactivity on bone formation and bone cell
function. Biomaterials. 1999; 20(23-24):2287-303.
43. Dorozhkin SV, Epple M. Biological and medical
significance of calcium phosphates. Angew Chem Int
Ed Engl. 2002; 41(17):3130-46.
44. Samavedi S, Whittington AR, Goldstein AS. Calcium
phosphate ceramics in bone tissue engineering:
a review of properties and their influence on cell
behavior. Acta Biomater. 2013; 9(9):8037-45.
45. Drzewiecka K, Krasowski J, Krasowski M, Łapińska B.
Mechanical properties of composite material modified
with amorphous calcium phosphate. J Achiev Mater
Manufact Eng. 2016; 74(1):22-8.
46. Fielding GA, Bandyopadhyay A, Bose S. Effects of
silica and zinc oxide doping on mechanical and
biological properties of 3D printed tricalcium
phosphate tissue engineering scaffolds. Dent Mater.
2012; 28(2):113-22.
47. Cascone M, Barbani N, Cristallini C, Giusti P, Ciardelli
G, Lazzeri L. Bioartificial polymeric materials based
on polysaccharides. J Biomater Sci Polym Ed. 2001;
12(3):267-81.
48. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A,
Barbani N, et al. Blends of poly-(ε-caprolactone) and
polysaccharides in tissue engineering applications.
Biomacromolecules. 2005; 6(4):1961-76.
49. Kang HG, Kim SY, Lee YM. Novel porous gelatin
scaffolds by overrun/particle leaching process for
tissue engineering applications. J Biomed Mater Res B
Appl Biomater. 2006; 79(2):388-97.
50. Roether J, Boccaccini AR, Hench L, Maquet V, Gautier S,
Jérôme R. Development and in vitro characterisation
of novel bioresorbable and bioactive composite
materials based on polylactide foams and Bioglass®
for tissue engineering applications. Biomaterials.
2002; 23(18):3871-8.
51. Woo BH, Kostanski JW, Gebrekidan S, Dani BA, Thanoo
B, DeLuca PP. Preparation, characterization and in vivo
evaluation of 120-day poly (D, L-lactide) leuprolide
microspheres. J Control Release. 2001; 75(3):307-15.
52. Du C, Cui F, Zhu X, de Groot K. Three‐dimensional
nano‐HAp/collagen matrix loading with osteogenic
cells in organ culture. J Biomed Mater Res. 1999;
44(4):407-15.
53. 48. Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini
K. Bonelike apatite growth on hydroxyapatite–gelatin
sponges from simulated body fluid. J Biomed Mater
Res. 2002; 59(4):709-15.
54. Zhang Y, Zhang M. Synthesis and characterization of
macroporous chitosan/calcium phosphate composite
scaffolds for tissue engineering. J Biomed Mater Res.
2001; 55(3):304-12.
55. Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay
A, Bose S. Understanding the influence of MgO and
SrO binary doping on the mechanical and biological
properties of β-TCP ceramics. Acta Biomater. 2010;
6(10):4167-74.
56. Li F, Feng QL, Cui FZ, Li HD, Schubert H. A simple
biomimetic method for calcium phosphate coating.
Surf Coat Technol. 2002; 154(1):88-93.
57. Farack J, Wolf-Brandstetter C, Glorius S, Nies B,
Standke G, Quadbeck P, et al. The effect of perfusion
culture on proliferation and differentiation of
human mesenchymal stem cells on biocorrodible
bone replacement material. Mater Sci Engin. 2011;
176(20):1767-72.
58. Hermawan H, Dubé D, Mantovani D. Degradable
metallic biomaterials: design and development of
Fe-Mn alloys for stents. J Biomed Mater Res A. 2010;
93(1):1-11.
59. Quadbeck P, Hauser R, Kümmel K, Standke G,
Stephani G, Nies B, et al. Iron based cellular metals
for degradable synthetic bone replacement. PM2010
World Congress, Florenz, Italy; 2010.
60. Yusop A, Bakir A, Shaharom NA, Abdul Kadir M,
Hermawan H. Porous biodegradable metals for
hard tissue scaffolds: a review. Int J Biomater. 2012;
2012(1):641430.
61. Bobyn J, Stackpool GJ, Hacking SA, Tanzer M, Krygier
JJ. Characteristics of bone ingrowth and interface
mechanics of a new porous tantalum biomaterial. J
Bone Joint Surg Br. 1999; 81(5):907-14.
62. Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ.
Tissue response to porous tantalum acetabular cups:
a canine model. J Arthroplasty. 1999; 14(3):347-54.
63. Adams JE, Zobitz ME, Reach JS Jr, An KN, Lewallen
DG, Steinmann SP. Canine carpal joint fusion: a model
for four-corner arthrodesis using a porous tantalum
implant. J Hand Surg Am. 2005; 30(6):1128-35.
64. Meneghini RM, Lewallen DG, Hanssen AD. Use of
porous tantalum metaphyseal cones for severe tibial
bone loss during revision total knee replacement:
surgical technique. J Bone Joint Surg Am. 2009;
91(Suppl 2 Pt 1):131-8.
65. Vehof JW, Spauwen PH, Jansen JA. Bone formation
in calcium-phosphate-coated titanium mesh.
Biomaterials. 2000; 21(19):2003-9.
66. Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, et al.
Hypoxia-mimicking mesoporous bioactive glass
scaffolds with controllable cobalt ion release
for bone tissue engineering. Biomaterials. 2012;
33(7):2076-85.
67. Hermawan H, Alamdari H, Mantovani D, Dube D.
Iron-manganese: new class of metallic degradable
biomaterials prepared by powder metallurgy. Powder
Metallurgy. 2008; 51(1):38-45.
68. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist
J, Bosiers M, et al. Drug‐eluting bioabsorbable
magnesium stent. J Interv Cardiol. 2004; 17(6):391-5.
69. Li Z, Gu X, Lou S, Zheng Y. The development of binary
Mg-Ca alloys for use as biodegradable materials
within bone. Biomaterials. 2008; 29(10):1329-44.
70. Peuster M, Wohlsein P, Brügmann M, Ehlerding M,
Seidler K, Fink C, et al. A novel approach to temporary
stenting: degradable cardiovascular stents produced
from corrodible metal-results 6-18 months after
implantation into New Zealand white rabbits. Heart.
2001; 86(5):563-9.
71. Song G. Control of biodegradation of biocompatable
magnesium alloys. Corrosion Sci. 2007; 49(4):1696-
701.
72. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-
Lindenberg A, Wirth CJ, et al. In vivo corrosion of four
magnesium alloys and the associated bone response.
Biomaterials. 2005; 26(17):3557-63.
73. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium
and its alloys as orthopedic biomaterials: a review.
Biomaterials. 2006; 27(9):1728-34.
74. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung
W, Haverich A. Biocorrosion of magnesium alloys: a
new principle in cardiovascular implant technology?
Heart. 2003; 89(6):651-6.
75. Gu XN, Zhou WR, Zheng YF, Liu Y, Li YX. Degradation
and cytotoxicity of lotus-type porous pure magnesium
as potential tissue engineering scaffold material.
Mater Lett. 2010; 64(17):1871-4.
76. Gu XN, Zheng YF. A review on magnesium alloys as
biodegradable materials. Front Mater Sci China. 2010;
4(2):111-5.
77. Stroganov GB, Savitsky EM, Tikhova NM, Terekhova
VF, Volkov MV, Sivash KM, et al. Magnesium-base alloy
for use in bone surgery. Washington, DC: Patent and
Trademark Office; 1972.
78. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese
V, Pisch A, et al. In vitro and in vivo corrosion
measurements of magnesium alloys. Biomaterials.
2006; 27(7):1013-8.
79. Saris NE, Mervaala E, Karppanen H, Khawaja JA,
Lewenstam A. Magnesium: an update on physiological,
clinical and analytical aspects. Clin Chim Acta. 2000;
294(1-2):1-26.
80. Witte F, Ulrich H, Palm C, Willbold E. Biodegradable
magnesium scaffolds: Part II: peri‐implant bone
remodeling. J Biomed Mater Res. 2007; 81(3):757-65.
81. Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous
tantalum structures for bone implants: fabrication,
mechanical and in vitro biological properties. Acta
Biomater. 2010; 6(8):3349-59.
82. Das K, Balla VK, Bandyopadhyay A, Bose S. Surface
modification of laser-processed porous titanium
for load-bearing implants. Scripta Mater. 2008;
59(8):822-5.
83. Goodman SB, Ma T, Chiu R, Ramachandran R,
Smith RL. Effects of orthopaedic wear particles
on osteoprogenitor cells. Biomaterials. 2006;
27(36):6096-101.
84. Okazaki Y. A new Ti-15Zr-4Nb-4Ta alloy for medical
applications. Curr Opin Solid State Mater Sci. 2001;
5(1):45-53.
85. Zdeblick TA, Phillips FM. Interbody cage devices.
Spine. 2003; 28(15 Suppl):S2-7.
86. Jansen JA, Vehof JW, Ruhe PQ, Kroeze-Deutman
H, Kuboki Y, Takita H, et al. Growth factor-loaded
scaffolds for bone engineering. J Control Release.
2005; 101(1-3):127-36.
87. Crowninshield RD. Mechanical properties of porous
metal total hip prostheses. Instr Course Lect. 1985;
35(1):144-8.
88. Faria PE, Carvalho AL, Felipucci DN, Wen C, Sennerby
L, Salata LA. Bone formation following implantation
of titanium sponge rods into humeral osteotomies
in dogs: a histological and histometrical study. Clin
Implant Dent Relat Res. 2010; 12(1):72-9.
89. van den Dolder J, Jansen JA. Titanium fiber mesh: a
nondegradable scaffold material. London: Engineering
of Functional Skeletal Tissues; 2007. P. 69-80.
90. Prymak O, Bogdanski D, Köller M, Esenwein SA, Muhr
G, Beckmann F, et al. Morphological characterization
and in vitro biocompatibility of a porous nickeltitanium
alloy. Biomaterials. 2005; 26(29):5801-7.
91. Greiner C, Oppenheimer SM, Dunand DC. High
strength, low stiffness, porous NiTi with superelastic
properties. Acta Biomater. 2005; 1(6):705-16.
92. Tarniţă D, Tarniţă DN, Bî􀆸zdoacă N, Mî􀆸ndrilă I,
Vasilescu M. Properties and medical applications of
shape memory alloys. Rom J Morphol Embryol. 2009;
50(1):15-21.
93. Assad M, Chernyshov A, Leroux MA, Rivard CH. A new
porous titanium-nickel alloy: part 1. Cytotoxicity and
genotoxicity evaluation. Biomed Mater Engin. 2002;
12(3):225-37.