1 Oliashirazi Institute, Marshall University, Huntington USA

2 Oliashirazi Institute, Marshall University, Huntington, USA

3 Rothman Institute at Thomas Jefferson University, Philadephia, PA, USA

4 Medcare Orthopedics and Spine Hospital, Dubai, UAE

5 Cooper Bone and Joint Institute at Cooper Medical School of Rowan University, Camden, NJ, USA Oliashirazi Institute at Marshall University, Huntington, WV, USA Rothman Institute at Thomas Jefferson University, Philadelphia, PA, USA


Knee osteoarthritis (OA) affects the joint beyond just the articular cartilage. Specifically, magnetic resonance imagingidentified
bone marrow lesions (BML) in the subchondral bone have both clinical and pathophysiological significance.
Compared to joint space narrowing on traditional radiographs, the presence of BMLs has been better correlated with
severity of clinical symptoms as well as clinical deterioration. Presence of a BML increases the likelihood for progression
to a total knee arthroplasty by up to nine fold. Histochemical analysis of BMLs has shown increased levels of tumor
necrosis factor-alpha, matrix metalloproteinases and substance P, thought to stimulate pain receptors in osteoarthritis.


Main Subjects

1. Neogi T. The epidemiology and impact of pain
in osteoarthritis. Osteoarthritis Cartilage. 2013;
2. Sharma L, Kapoor D, Issa S. Epidemiology of

osteoarthritis: an update. Curr Opin Rheumatol. 2006;
3. Heidari B. Knee osteoarthritis prevalence, risk factors,
pathogenesis and features: part I. Caspian J Intern

Med. 2011; 2(2):205-12.
4. Felson DT. An update on the pathogenesis and
epidemiology of osteoarthritis. Radiol Clin North Am.
2004; 42(1):1-9.
5. Roemer FW, Eckstein F, Hayashi D, Guermazi A. The
role of imaging in osteoarthritis. Best Pract Res Clin
Rheumatol. 2014; 28(1):31-60.
6. Wright RW, Ross JR, Haas AK, Huston LJ, Garofoli EA,
Harris D, et al. Osteoarthritis classification scales:
interobserver reliability and arthroscopic correlation.
J Bone Joint Surg Am. 2014; 96(14):1145-51.
7. Kinds MB, Marijnissen AC, Bijlsma JW, Boers M,
Lafeber FP, Welsing PM. Quantitative radiographic
features of early knee osteoarthritis: development
over 5 years and relationship with symptoms in the
CHECK cohort. J Rheumatol. 2013; 40(1):58-65.
8. Guymer E, Baranyay F, Wluka AE, Hanna F, Bell R, Davis
S, et al. A study of the prevalence and associations of
subchondral bone marrow lesions in the knees of
healthy, middle-aged women. Osteoarthritis Cartilage.
2007; 15(12):1437-42.
9. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N,
et al. Osteoarthritis: MR imaging findings in different
stages of disease and correlation with clinical findings.
Radiology. 2003; 226(2):373-81.
10. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale
ME, Skinner KM, et al. The association of bone marrow
lesions with pain in knee osteoarthritis. Ann Intern
Med. 2001; 134(7):541-9.
11. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley
MP, et al. Increase in bone marrow lesions associated
with cartilage loss: a longitudinal magnetic resonance
imaging study of knee osteoarthritis. Arthritis Rheum.
2006; 54(5):1529-35.
12. Kubota M, Ishijima M, Kurosawa H, Liu L, Ikeda H,
Osawa A, et al. A longitudinal study of the relationship
between the status of bone marrow abnormalities
and progression of knee osteoarthritis. J Orthop Sci.
2010; 15(5):641-6.
13. Roemer FW, Hunter DJ, Guermazi A. MRI-based
semiquantitative assessment of subchondral
bone marrow lesions in osteoarthritis research.
Osteoarthritis Cartilage. 2009; 17(3):414-5.
14. Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient
osteoporosis: transient bone marrow edema?
Radiology. 1988; 167(3):757-60.
15. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi
A, et al. Fluctuation of knee pain and changes in
bone marrow lesions, effusions, and synovitis on
magnetic resonance imaging. Arthritis Rheum. 2011;
16. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer
W, Bohndorf K, et al. MRI-detected subchondral
bone marrow signal alterations of the knee joint:
terminology, imaging appearance, relevance and
radiological differential diagnosis. Osteoarthritis
Cartilage. 2009; 17(9):1115-31.
17. Wluka AE, Hanna F, Davies-Tuck M, Wang Y, Bell RJ,
Davis SR, et al. Bone marrow lesions predict increase
in knee cartilage defects and loss of cartilage volume
in middle-aged women without knee pain over 2
years. Ann Rheum Dis. 2009; 68(6):850-5.
18. Roemer FW, Guermazi A, Javaid MK, Lynch JA, Niue J,
Zhang Y, et al. Change in MRI-detected subchondral
bone marrow lesions is associated with cartilage
loss: the MOST Study. A longitudinal multicentre
study of knee osteoarthritis. Ann Rheum Dis. 2009;
19. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N,
Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the
knee: association between clinical features and MR
imaging findings. Radiology. 2006; 239(3):811-7.
20. Reichenbach S, Guermazi A, Niu J, Neogi T, Hunter DJ,
Roemer FW, et al. Prevalence of bone attrition on knee
radiographs and MRI in a community-based cohort.
Osteoarthritis Cartilage. 2008; 16(9):1005-10.
21. Tanamas SK, Wluka AE, Pelletier JP, Pelletier JM,
Abram F, Berry PA, et al. Bone marrow lesions in
people with knee osteoarthritis predict progression
of disease and joint replacement: a longitudinal study.
Rheumatology (Oxford). 2010; 49(12):2413-9.
22. Garnero P, Peterfy C, Zaim S, Schoenharting M. Bone
marrow abnormalities on magnetic resonance imaging
are associated with type II collagen degradation in
knee osteoarthritis: a three-month longitudinal study.
Arthritis Rheum. 2005; 52(9):2822-9.
23. Phan CM, Link TM, Blumenkrantz G, Dunn TC, Ries
MD, Steinbach LS, et al. MR imaging findings in the
follow-up of patients with different stages of knee
osteoarthritis and the correlation with clinical
symptoms. Eur Radiol. 2006; 16(3):608-18.
24. Hernández-Molina G, Neogi T, Hunter DJ, Niu J,
Guermazi A, Reichenbach S, et al. The association of
bone attrition with knee pain and other MRI features
of osteoarthritis. Ann Rheum Dis. 2008; 67(1):43-7.
25. Hayashi D, Englund M, Roemer FW, Niu J, Sharma L,
Felson DT, et al. Knee malalignment is associated with
an increased risk for incident and enlarging bone
marrow lesions in the more loaded compartments:
the MOST study. Osteoarthritis Cartilage. 2012;
26. Hayashi D, Guermazi A, Kwoh CK, Hannon MJ, Moore
C, Jakicic J, et al. Semiquantitative assessment of
subchondral bone marrow edema-like lesions and
subchondral cysts of the knee at 3T MRI: a comparison
between intermediate-weighted fat-suppressed spin
echo and Dual Echo Steady State sequences. BMC
Musculoskelet Disord. 2011; 12(1):198.
27. Peterfy CG, Gold G, Eckstein F, Cicuttini F, Dardzinski B,
Stevens R. MRI protocols for whole-organ assessment
of the knee in osteoarthritis. Osteoarthritis Cartilage.
2006; 14(Suppl A):A95-111.
28. Mayerhoefer ME, Breitenseher MJ, Kramer J, Aigner
N, Norden C, Hofmann S. STIR vs. T1-weighted fatsuppressed
gadolinium-enhanced MRI of bone
marrow edema of the knee: computer-assisted
quantitative comparison and influence of injected
contrast media volume and acquisition parameters. J
Magn Reson Imaging. 2005; 22(6):788-93.
29. Guermazi A, Burstein D, Conaghan P, Eckstein F, Hellio
Le Graverand-Gastineau MP, Keen H, et al. Imaging
in osteoarthritis. Rheum Dis Clin North Am. 2008;

30. Eckstein F, Mosher T, Hunter D. Imaging of knee
osteoarthritis: data beyond the beauty. Curr Opin
Rheumatol. 2007; 19(5):435-43.
31. Gray ML, Burstein D. Molecular (and functional)
imaging of articular cartilage. J Musculoskelet
Neuronal Interact. 2004; 4(4):365-8.
32. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux
Y, White D, et al. Whole-Organ Magnetic Resonance
Imaging Score (WORMS) of the knee in osteoarthritis.
Osteoarthritis Cartilage. 2004; 12(3):177-90.
33. Schmid MR, Hodler J, Vienne P, Binkert CA, Zanetti
M. Bone marrow abnormalities of foot and ankle:
STIR versus T1-weighted contrast-enhanced fatsuppressed
spin-echo MR imaging. Radiology. 2002;
34. Li X, Ma BC, Bolbos RI, Stahl R, Lozano J, Zuo J, et al.
Quantitative assessment of bone marrow edemalike
lesion and overlying cartilage in knees with
osteoarthritis and anterior cruciate ligament tear
using MR imaging and spectroscopic imaging at 3
Tesla. J Magn Reson Imaging. 2008; 28(2):453-61.
35. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A,
Conaghan PG. The reliability of a new scoring system
for knee osteoarthritis MRI and the validity of bone
marrow lesion assessment: BLOKS (Boston Leeds
Osteoarthritis Knee Score). Ann Rheum Dis. 2008;
36. Hunter DJ, Zhang YQ, Niu JB, Tu X, Amin S, Clancy M,
et al. The association of meniscal pathologic changes
with cartilage loss in symptomatic knee osteoarthritis.
Arthritis Rheum. 2006; 54(3):795-801.
37. Amin S, Guermazi A, Lavalley MP, Niu J, Clancy M,
Hunter DJ, et al. Complete anterior cruciate ligament
tear and the risk for cartilage loss and progression of
symptoms in men and women with knee osteoarthritis.
Osteoarthritis Cartilage. 2008; 16(8):897-902.
38. Kornaat PR, Ceulemans RY, Kroon HM, Riyazi N,
Kloppenburg M, Carter WO, et al. MRI assessment
of knee osteoarthritis: Knee Osteoarthritis Scoring
System (KOSS)--inter-observer and intra-observer
reproducibility of a compartment-based scoring
system. Skeletal Radiol. 2005; 34(2):95-102.
39. Roemer FW, Eckstein F, Guermazi A. Magnetic
resonance imaging-based semiquantitative and
quantitative assessment in osteoarthritis. Rheum Dis
Clin North Am. 2009; 35(3):521-55.
40. Felson DT, Lynch J, Guermazi A, Roemer FW, Niu J,
McAlindon T, et al. Comparison of BLOKS and WORMS
scoring systems part II. Longitudinal assessment
of knee MRIs for osteoarthritis and suggested
approach based on their performance: data from
the Osteoarthritis Initiative. Osteoarthritis Cartilage.
2010; 18(11):1402-7.
41. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conagahn
PG, Boudreau RM, et al. Evolution of semi-quantitative
whole joint assessment of knee OA: MOAKS (MRI
Osteoarthritis Knee Score). Osteoarthritis Cartilage.
2011; 19(8):990-1002.
42. Roemer FW, Guermazi A. MR imaging-based
semiquantitative assessment in osteoarthritis. Radiol
Clin North Am. 2009; 47(4):633-54.
43. Kean WF, Kean R, Buchanan WW. Osteoarthritis:
symptoms, signs and source of pain.
Inflammopharmacology. 2004; 12(1):3-31.
44. Menashe L, Hirko K, Losina E, Kloppenburg M, Zhang
W, Li L, et al. The diagnostic performance of MRI in
osteoarthritis: a systematic review and meta-analysis.
Osteoarthritis Cartilage. 2012; 20(1):13-21.
45. Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P,
Clancy M, et al. Correlation of the development of
knee pain with enlarging bone marrow lesions on
magnetic resonance imaging. Arthritis Rheum. 2007;
46. Lo GH, McAlindon TE, Niu J, Zhang Y, Beals C,
Dabrowski C, et al. Bone marrow lesions and joint
effusion are strongly and independently associated
with weight-bearing pain in knee osteoarthritis:
data from the osteoarthritis initiative. Osteoarthritis
Cartilage. 2009; 17(12):1562-9.
47. Sowers M, Karvonen-Gutierrez CA, Jacobson JA, Jiang
Y, Yosef M. Associations of anatomical measures from
MRI with radiographically defined knee osteoarthritis
score, pain, and physical functioning. J Bone Joint Surg
Am. 2011; 93(3):241-51.
48. Sharkey PF, Cohen SB, Leinberry CF, Parvizi J.
Subchondral bone marrow lesions associated with
knee osteoarthritis. Am J Orthop. 2012; 41(9):413-7.
49. Scher C, Craig J, Nelson F. Bone marrow edema in the
knee in osteoarthrosis and association with total knee
arthroplasty within a three-year follow-up. Skeletal
Radiol. 2008; 37(7):609-17.
50. Raynauld JP, Martel-Pelletier J, Haraoui B, Choquette
D, Dorais M, Wildi LM, et al. Risk factors predictive
of joint replacement in a 2-year multicentre clinical
trial in knee osteoarthritis using MRI: results from
over 6 years of observation. Ann Rheum Dis. 2011;
51. Roemer FW, Nevitt MC, Felson DT, Niu J, Lynch JA,
Crema MD, et al. Predictive validity of within-grade
scoring of longitudinal changes of MRI-based cartilage
morphology and bone marrow lesion assessment in
the tibio-femoral joint - the MOST Study. Osteoarthritis
Cartilage. 2012; 20(11):1391-8.
52. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF,
Krupinski EA, Schwartz SA, et al. Bone marrow edema
pattern in advanced hip osteoarthritis: quantitative
assessment with magnetic resonance imaging and
correlation with clinical examination, radiographic
findings, and histopathology. Skeletal Radiol. 2008;
53. Leydet-Quilici H, Le Corroller T, Bouvier C, Giorgi
R, Argenson JN, Champsaur P, et al. Advanced hip
osteoarthritis: magnetic resonance imaging aspects
and histopathology correlations. Osteoarthritis
Cartilage. 2010; 18(11):1429-35.
54. Saadat E, Jobke B, Chu B, Lu Y, Cheng J, Li X, et al.
Diagnostic performance of in vivo 3-T MRI for articular
cartilage abnormalities in human osteoarthritic knees
using histology as standard of reference. Eur Radiol.
2008; 18(10):2292-302.
55. Hulejová H, Baresová V, Klézl Z, Polanská M, Adam

M, Senolt L. Increased level of cytokines and matrix
metalloproteinases in osteoarthritic subchondral
bone. Cytokine. 2007; 38(3):151-6.
56. Plenk H, Hofmann S, Eschberger J, Gstettner M, Kramer
J, Schneider W, et al. Histomorphology and bone
morphometry of the bone marrow edema syndrome
of the hip. Clin Orthop Relat Res. 1997; 334(1):73-84.
57. Hunter DJ, Gerstenfeld L, Bishop G, Davis AD, Mason,
ZD, Einhorn TA, et al. Bone marrow lesions from
osteoarthritis knees are characterized by sclerotic
bone that is less well mineralized. Arthritis Res Ther.
2009; 11(1):R11.
58. Hunter DJ, Lavalley M, Li J, Bauer DC, Nevitt M, DeGroot
J, et al. Biochemical markers of bone turnover and
their association with bone marrow lesions. Arthritis
Res Ther. 2008; 10(4):R102.
59. Radin EL, Parker HG, Pugh JW, Steinberg RS, Paul IL,
Rose RM. Response of joints to impact loading. 3.
Relationship between trabecular microfractures and
cartilage degeneration. J Biomech. 1973; 6(1):51-7.
60. Wu JZ, Herzog W, Epstein M. Joint contact mechanics
in the early stages of osteoarthritis. Med Eng Phys.
2000; 22(1):1-12.
61. Frost HM. A 2003 update of bone physiology and
Wolff’s Law for clinicians. Angle Orthod. 2004;
62. Poulet B, de Souza R, Kent AV, Saxon L, Barker O,
Wilson A, et al. Intermittent applied mechanical
loading induces subchondral bone thickening that
may be intensified locally by contiguous articular
cartilage lesions. Osteoarthritis Cartilage. 2015;
63. Frobell RB, Wirth W, Nevitt M, Wyman BT, Benichou
O, Dreher D, et al. Presence, location, type and size
of denuded areas of subchondral bone in the knee
as a function of radiographic stage of OA - data from
the OA initiative. Osteoarthritis Cartilage. 2010;
64. Finocchietti S, Graven-Nielsen T, Arendt-Nielsen
L. Bone hyperalgesia after mechanical impact
stimulation: a human experimental pain model.
Somatosens Mot Res. 2014; 31(4):178-85.
65. Hunter DJ, McDougall JJ, Keefe FJ. The symptoms of
osteoarthritis and the genesis of pain. Rheum Dis Clin
North Am. 2008; 34(3):623-43.