Prognostic Value of Impaired Preoperative Ankle Reflex in Surgical Outcome of Lumbar Disc Herniation

Farzad Omidi-Kashani, MD; Hasankhani EG, MD; Atefe Zare, MD

Research performed at Orthopedic Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran

Received: 4 February 2015 Accepted: 8 September 2015

Abstract

Background: Several prognostic factors exist influencing the outcome of surgical discectomy in the patients with lumbar disc herniation (LDH). The aim of this study is to evaluate the relationship between severity of preoperative impaired ankle reflex and outcomes of lumbar discectomy in the patients with L5-S1 LDH.

Methods: We retrospectively evaluated 181 patients (108 male and 73 female) who underwent simple discectomy in our orthopedic department from April 2009 to April 2013 and followed them up for more than one year. The mean age of the patients was 35.3±8.9 years old. Severity of reflex impairment was graded from 0 to 4+ and radicular pain and disability were assessed by visual analogue scale (VAS) and Oswestry disability index (ODI) questionnaires, respectively. Subjective satisfaction was also evaluated at the last follow-up visit. Chi-square and Kruskal-Wallis tests were used to compare qualitative variables.

Results: Reflex impairment existed in 44.8% preoperatively that improved to 10% at the last follow-up visit. Statistical analyses could not find a significant relationship between the severity of impaired ankle reflex and sex or age (P=0.538 and P=0.709, respectively). There was a remarkable relationship between severity of reflex impairment and preoperative radicular pain or disability (P=0.012 and P=0.002, respectively). Kruskal-Wallis test showed that a more severity in ankle reflex impairment was associated with not only less improvement in postoperative pain and disability but also less satisfaction rate (P<0.001 in all three).

Conclusions: In the patients with L5-S1 LDH, more severe ankle reflex impairment is associated with less improvement in postoperative pain, disability, and subjective satisfaction.

Keywords: Ankle Reflex, Discectomy, Outcome, Prognosis

Introduction

Lumbar disc herniation (LDH) is one of the most common spine disorders. The disease usually improves with conservative treatment, although surgical intervention is occasionally needed. Several important prognostic factors influencing the outcome of surgical discectomy are known and previously discussed. These included herniation type, herniation level, technique and amount of discectomy, smoking, revision surgery, obesity, Lasegue’s test, duration of preoperative sciatica, anxiety and depression (1-12). It seems that factors such as age, gender, severity of preoperative muscular weakness, and length of postoperative activity restriction have no significant effect on prognosis (8, 13-16).

The correlation between severity of impaired ankle reflex (Achilles’ deep tendon reflex) and outcomes of lumbar discectomy in the patients with L5-S1 lumbar disc herniation has not been previously evaluated. In this study we aim to assess the efficacy of this factor.
Materials and Methods

After local institutional review board approval, we retrospectively evaluated the patients with L5-S1 lumbar disc herniation whom were treated by simple discectomy in our orthopedic department from April 2009 to April 2013. Our inclusion criteria consisted of simple discectomy, L5-S1 LDH, complaints that were refractory to a minimum period of six weeks conservative treatment, and a follow-up period more than 12 months. Those cases with cauda equina syndrome, generalized spinal stenosis, unstable spine requiring spinal fusion or instrumentation, and revision surgery were excluded.

Preoperatively, history taking and physical examination were performed on all patients and documented in their medical records by the senior author (FOK). Plain radiography and magnetic resonance imaging scanning were taken from all cases. Severity of reflex impairment was graded from 0 to 4+ (17). Grade 0 means no response, 1+ a decreased response, 2+ normal response, 3+ an increased response, and 4+ repeating reflex or clonus. The grading was also compared with the normal side. All the patients were assessed by visual analogue scale (VAS) and Oswestry disability index (ODI) questionnaires for scoring radicular leg pain (not lumbar pain) and functional disability (18, 19). VAS scoring was scaled from 0, no pain to 10, worst pain. Translation and cross cultural validation of ODI questionnaire was already performed in Persian speaking patients (20). These questionnaires were repeated at the last follow-up visit. At this time, satisfaction rate was evaluated by asking the patient to choose one of the following responses about their satisfaction with the surgical outcomes, based on criteria adopted from the North American Spine Society Low back Outcome Instrument (21).

(1) Excellent: if the operation met the patient’s expectations,(2) Good: if the patient did not improve as much as he/she had hoped, but the patient would undergo the same operation for the same results,(3) Fair: if the operation helped but the patient would not undergo the same surgery for the same result,(4) Poor: if the patient is the same as or worse than he or she was preoperatively.

Discussion

Awareness of prognostic factors affecting the surgical outcomes of lumbar disc herniation can make the physicians’ and patients’ expectations of surgery closer to reality. We could not find any papers directly evaluated the impact of reflex impairment on surgical outcomes of lumbar discectomy to be able to compare the results but numerous studies exist in the literature assessing other prognostic factors. In a relevant study conducted by Blaauw et al., improvement in radicular function one year after lumbar surgery for both LDH and lumbar stenosis in 443 cases was evaluated (22). Before surgery, Achilles reflex impairment was detected in 42%; while

Table 1. Clinical improvement and patients’ satisfaction in our treated cases

<table>
<thead>
<tr>
<th>Index</th>
<th>Before surgery</th>
<th>At the last follow-up visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achilles Reflex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2+</td>
<td>100 (55.2%)</td>
<td>163 (90.1%)</td>
</tr>
<tr>
<td>1+</td>
<td>57 (31.5%)</td>
<td>12 (6.7%)</td>
</tr>
<tr>
<td>0</td>
<td>24 (13.3%)</td>
<td>6 (3.3%)</td>
</tr>
<tr>
<td>VAS0</td>
<td>7.8±1.9</td>
<td>1.5±1.4</td>
</tr>
<tr>
<td>0DI</td>
<td>47.8±23.5</td>
<td>7.2±10.8</td>
</tr>
<tr>
<td>Satisfaction rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>-</td>
<td>123 (68.0%)</td>
</tr>
<tr>
<td>Good</td>
<td>-</td>
<td>43 (23.8%)</td>
</tr>
<tr>
<td>Fair</td>
<td>-</td>
<td>7 (3.9%)</td>
</tr>
<tr>
<td>Poor</td>
<td>-</td>
<td>8 (4.4%)</td>
</tr>
</tbody>
</table>

Table VAS: Visual Analogue Scale

1°DI: Oswestry Disability Index

Statistical analysis

Data collected including demographic characteristics, ODI, VAS, ankle reflex grading, satisfaction rate, follow-up periods were entered into SPSS ver. 16 (SPSS Inc., Chicago, IL, USA). Data description was performed by statistical indicators like mean, median, and standard deviation. Chi-square and Kruskal-Wallis tests were used to compare qualitative variables. In all statistical tests, p value less than 0.05 was considered as significant.

Results

Ultimately, 181 patients (108 male; 59.7% and 73 females; 40.3%) were eligible to be enrolled into our study. The mean age of the patients was 35.3±8.9 years old (ranged; 20-73). We could follow-up these patients for 35.6±13.9 (ranged; 12 to 59 months). Mean improvement in reflex impairment, VAS, ODI and final patients’ satisfaction rates were depicted in Table 1. Iatrogenic aggravation or creation of reflex impairment occurred in no patients.

Statistical analyses could not find a significant relationship between the severity of impaired preoperative ankle reflex and sex or age (P=0.538 and P=0.709, respectively). There was a remarkable relationship between severity of reflex impairment and preoperative radicular pain or disability (P=0.012 and P=0.002, respectively). Kruskal-Wallis test showed that a more severity in ankle reflex impairment was associated with not only less improvement in postoperative pain and disability but also less satisfaction rate (P=0.001 in all three).

Discussion

Awareness of prognostic factors affecting the surgical outcomes of lumbar disc herniation can make the physicians’ and patients’ expectations of surgery closer to reality. We could not find any papers directly evaluated the impact of reflex impairment on surgical outcomes of lumbar discectomy to be able to compare the results but numerous studies exist in the literature assessing other prognostic factors. In a relevant study conducted by Blaauw et al., improvement in radicular function one year after lumbar surgery for both LDH and lumbar stenosis in 443 cases was evaluated (22). Before surgery, Achilles reflex impairment was detected in 42%; while
one year after operation, this percent improved in 57% of patients. Iatrogenic deterioration or creation of reflex impairment occurred in 10% of the patients. Although the samples studied in this and our papers are not the same, prevalence of reflex impairment in the latter was 44.8% preoperatively that improved to 10% at the last follow-up visit (percent improvement of 77.8%). Iatrogenic deterioration was not observed in any of our patients.

Mariconda et al. in another similar study evaluated functional relevance of neurologic recovery at about 20 years after lumbar discectomy in 180 cases (23). In this study, the prevalence of abnormal reflexes before surgery was 38.9% and at the last follow-up visit, ODI<20% was reported by 75.6% while 90% of the patients were satisfied with the operation. The authors did not assess the effect of reflex impairment on clinical results but they found that age and gender had higher educational level had good prognostic rules in surgical outcomes of lumbar discectomy. In comparison, our study only assessed the patients with L5-S1 LDH and follow-up period was much shorter. The prevalence of reflex impairment of less than +2 in our cases was 44.8% and surgery could reduce ODI to less than 20% in 86.7% of the patients. Excellent or good subjective satisfaction was achieved in 91.8% of our treated that was comparable with the previous study. Lee and co-authors in a retrospective study on 40 patients with LDH who underwent open discectomy, analyzed prognostic factors affecting the surgical results (8). They assessed both radiological and clinical factors such as type and degree of herniation, presence of instability, age, sex, level of LDH, length of preoperative pain, smoking, body mass index, and revision versus primary operation. These authors finally concluded that revision surgery and non-extruded herniation were two poor prognostic factors that inversely could affect the ultimate clinical results. In the study we carried out, severe ankle reflex impairment was found to be a poor prognostic factor in predicting the final functional outcomes.

Our study has several faults worth mentioning. First, design of the study was retrospective and inevitably, the study contains its inherent limitations. Second, the patients were followed-up and examined by the same physicians who were involved in their treatment and this could somewhat distort the results. To achieve stronger and more reliable results, it is proposed that a prospective control trial study to be conducted and surgical outcomes evaluated by a blind assessor. In conclusion, we found that Achillles reflex impairment not only correlates with preoperative severity of pain or disability, but also has a poor prognostic effect. More severe preoperative ankle reflex impairment is associated with less improvement in postoperative pain, disability, and also less subjective satisfaction.

Acknowledgment
We sincerely thank Research Council of Mashhad University of Medical Sciences for providing the fund of this study (No. 900186, approved date: 09.28. 2011). The results described in this paper were part of a medical student thesis.

Farzad Omid-Kashani MD
Hasankhani EG MD
Orthopedic Research Center, Orthopedic Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
Atefe Zare MD
Orthopaedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

References

