Unveiling Syndesmotic Malreduction: A Proof-of-Concept towards Portable Ultrasound Detection

Document Type : RESEARCH PAPER

Authors

1 1 Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 2 Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA

2 1 Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 2 Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA 3 Department of Orthopedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India

3 1 Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 2 Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA 4 Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium 5 Department of Human Structure and Repair, Ghent University, Ghent, Belgium

4 1 Foot & Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 2 Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA 6 Istanbul University – Cerrahpasa, Cerrahpasa Medical Faculty, Department of Orthopaedics and Traumatology, Istanbul, Turkey 7 CAST (Cerrahpasa Research, Simulation and Design Laboratory), Istanbul University-Cerrahpasa, Istanbul, Turkey

10.22038/abjs.2023.75672.3503

Abstract

Objectives: To evaluate the utility and diagnostic performance of portable handheld ultrasound for evaluating fibular rotation at the distal tibiofibular articulation after syndesmotic disruption.
Methods: Four above-the-knee cadaveric specimens were included. Syndesmotic disruption was precipitated by transecting the Anterior Inferior Tibiofibular Ligament, Interosseous Ligament, and Posterior Inferior Tibiofibular Ligament. Thereafter, a proximal fibular osteotomy was performed, and three conditions were modeled at the distal syndesmosis: 1) reduced, 2) 5 degree internal rotation malreduction, and 3) 5 degree external rotation malreduction. Two blinded observers performed separate ultrasonographic examinations for each condition at the level of both the anterior and posterior distal tibiofibular articular surfaces. Syndesmotic gap penetrance, defined as the ability of the P-US to generate signal between the distal fibula and tibia at the level of the incisura, was graded positive if the sonographic waves penetrated between the distal tibiofibular joint and negative if no penetrating waves were detected. The accuracy measures of the anterior and posterior gap penetrance were evaluated individually.
Results: Our preliminary results showed that posterior gap penetrance showed good performance when detecting either internal or external rotational malreduction of the fibula with very good specificity (87.5%) and PPV (90.0%). On the other hand, the anterior gap penetrance showed limited performance when detecting either form of rotational malreduction. 
Conclusion: We introduced a novel sign, the “gap penetrance sign”, best measured from the posterior ankle, which can accurately detect syndesmotic malreduction using P-US in a manner that does not require specific quantitative measurements and is readily accessible to early P-US users.
 Level of evidence: III

Keywords

Main Subjects


  1. Porter DA. Evaluation and treatment of ankle syndesmosis injuries. Instr Course Lect. 2009; 58:575-581.
  2. Mulligan EP. Evaluation and management of ankle syndesmosis injuries. Phys Ther Sport off J Assoc Chart Physiother Sports Med. 2011; 12(2):57-69. doi:10.1016/j.ptsp.2011.03.001.
  3. van Zuuren WJ, Schepers T, Beumer A, Sierevelt I, van Noort A, van den Bekerom MPJ. Acute syndesmotic instability in ankle fractures: A review. Foot Ankle Surg. 2017; 23(3):135-141. doi:10.1016/j.fas.2016.04.001.
  4. Stark E, Tornetta PI, Creevy WR. Syndesmotic Instability in Weber B Ankle Fractures: A Clinical Evaluation. J Orthop Trauma. 2007; 21(9):643. doi:10.1097/BOT.0b013e318157a63a.
  5. Porter DA, Jaggers RR, Barnes AF, Rund AM. Optimal management of ankle syndesmosis injuries. Open Access J Sports Med. 2014; 5:173-182. doi:10.2147/OAJSM.S41564.
  6. Gardner MJ, Graves ML, Higgins TF, Nork SE. Technical Considerations in the Treatment of Syndesmotic Injuries Associated With Ankle Fractures. J Am Acad Orthop Surg. 2015; 23(8):510. doi:10.5435/JAAOS-D-14-00233.
  7. Gardner MJ, Demetrakopoulos D, Briggs SM, Helfet DL, Lorich DG. Malreduction of the Tibiofibular Syndesmosis in Ankle Fractures. Foot Ankle Int. 2006; 27(10):788-792. doi:10.1177/107110070602701005.
  8. Loizou CL, Sudlow A, Collins R, Loveday D, Loveday D, Smith G. Radiological assessment of ankle syndesmotic reduction. The Foot. 2017:32:39-43. doi:10.1016/j.foot.2017.05.002.
  9. Franke J, von Recum J, Suda AJ, Grützner PA, Wendl K. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 2012; 94(15):1386-1390. doi:10.2106/JBJS.K.01122.
  10. Schwarz N, Köfer E. Postoperative Computed Tomography–Based Control of Syndesmotic Screws. Eur J Trauma. 2005; 31(3):266-270. doi:10.1007/s00068-005-1046-8.
  11. Tornetta P, Tornetta P rd, Yakavonis M, Veltre DR, Veltre DR, Shah AR. Reducing the Syndesmosis Under Direct Vision: Where Should I Look? J Orthop Trauma. 2019; 33(9):450-454. doi:10.1097/bot.0000000000001552.
  12. Weening B, Bhandari M. Predictors of functional outcome following transsyndesmotic screw fixation of ankle fractures. J Orthop Trauma. 2005; 19(2):102-108.

 

doi:10.1097/00005131-200502000-00006.

  1. Sagi HC, Shah AR, Sanders RW. The Functional Consequence of Syndesmotic Joint Malreduction at a Minimum 2-Year Follow-Up. J Orthop Trauma. 2012; 26(7):439-443. doi:10.1097/BOT.0b013e31822a526a.
  2. van den Heuvel SB, Dingemans SA, Gardenbroek TJ, Schepers T. Assessing Quality of Syndesmotic Reduction in Surgically Treated Acute Syndesmotic Injuries: A Systematic Review. J Foot Ankle Surg. 2019; 58(1):144-150. doi:10.1053/j.jfas.2018.08.038.
  3. Roberts CS, Beck DJJ, Heinsen J, Seligson D. Review Article Diagnostic Ultrasonography: Applications in Orthopaedic Surgery. Clin Orthop Relat Res. 2002 :( 401):248-64. doi: 10.1097/00003086-200208000-00028.
  4. Apard T. Ultrasonography for the orthopaedic surgeon. Orthop Traumatol Surg Res. 2019; 105(1):S7-S14. doi:10.1016/j.otsr.2018.04.027.
  5. Ghandour S, Ashkani-Esfahani S, Kwon JY. The Emerging Role of Automation, Measurement Standardization, and Artificial Intelligence in Foot and Ankle Imaging: An Update. Foot Ankle Clin. 2023; 28(3):667-680. doi:10.1016/j.fcl.2023.04.006.
  6. Hagemeijer NC, Lubberts B, Saengsin J, et al. Portable dynamic ultrasonography is a useful tool for the evaluation of suspected syndesmotic instability: a cadaveric study. Knee Surg Sports Traumatol Arthrosc. 2023; 31(5):1986-1993. doi:10.1007/s00167-022-07058-4.
  7. Jirawat S, Noortje H, Rohan B, et al. Using Portable Ultrasound to Measure the Effect of Lateral Ankle Ligament Injury on Syndesmotic Stability: A Cadaveric Study. Foot Ankle Orthop. 2020; 5(4). doi:10.1177/2473011420S00423.
  8. Westermann RW, Rungprai C, Goetz JE, Femino J, Amendola A, Phisitkul P. The Effect of Suture-Button Fixation on Simulated Syndesmotic Malreduction: A Cadaveric Study. JBJS. 2014; 96(20):1732. doi:10.2106/JBJS.N.00198.
  9. Krähenbühl N, Bailey TL, Weinberg MW, et al. Impact of torque on assessment of syndesmotic injuries using weightbearing computed tomography scans. Foot Ankle Int. 2019; 40(6):710-719. doi: 10.1177/1071100719829720.
  10. Schepers T, Dingemans SA, Rammelt S. Recent developments in the treatment of acute syndesmotic injuries. Fuß Sprunggelenk. 2016; 14(2):66-78. doi:10.1016/j.fuspru.2016.02.004
  11. Trevethan R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front Public Health. 2017; 5:307. doi:10.3389/fpubh.2017.00307.
  12. Marmor M, Hansen E, Han HK, Buckley J, Matityahu A. Limitations of Standard Fluoroscopy in Detecting Rotational Malreduction of the Syndesmosis in an Ankle Fracture Model. Foot Ankle Int. 2011; 32(6):616-622. doi:10.3113/FAI.2011.0616.
  13. Vasarhelyi A, Lubitz J, Gierer P, et al. Detection of Fibular Torsional Deformities after Surgery for Ankle Fractures with a Novel CT Method. Foot Ankle Int. 2006; 27(12):1115-1121. doi:10.1177/107110070602701219.
  14. Dikos GD, Heisler J, Choplin RH, Weber TG. Normal Tibiofibular Relationships at the Syndesmosis on Axial CT Imaging. J Orthop Trauma. 2012; 26(7):433-438. doi:10.1097/BOT.0b013e3182535f30.
  15. Knops S, Kohn MA, Kohn M, Hansen EN, Matityahu A, Marmor M. Rotational malreduction of the syndesmosis: reliability and accuracy of computed tomography measurement methods. Foot Ankle Int. 2013; 34(10):1403-10. doi:10.1177/1071100713489286.
  16. Nault ML, Hébert-Davies J, Laflamme GY, Leduc S. CT scan assessment of the syndesmosis: a new reproducible method. J Orthop Trauma. 2013; 27(11):638-641. doi:10.1097/BOT.0b013e318284785a.
  17. Yildirim H, Mavi A, Büyükbebeci O, Gümüşlburun E. Evaluation of the Fibular Incisura of the Tibia with Magnetic Resonance Imaging. Foot Ankle Int. 2003; 24(5):387-391. doi:10.1177/107110070302400502.
  18. Sanders D, Schneider P, Taylor M, Tieszer C, Lawendy AR, Canadian Orthopaedic Trauma Society. Improved Reduction of the Tibiofibular Syndesmosis With TightRope Compared With Screw Fixation: Results of a Randomized Controlled Study. J Orthop Trauma. 2019; 33(11):531-537. doi:10.1097/BOT.0000000000001559.