Available 3D-printed Biomolecule-Loaded Alginate-Based Scaffolds for Cartilage Tissue Engineering Applications: A Review on Current Status and Future Prospective

Document Type : CURRENT CONCEPTS REVIEW

Authors

1 Faculty of New Sciences and Technologies, Department of Biotechnology , Semnan University, Semnan, Iran

2 Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran

3 3 Bone and Joint Research laboratory, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran 4 Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran

4 Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran

5 Department of Clinical Biochemistry, Babol University of Medical Science, Babol, Iran

6 4 Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran- 7 Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran

Abstract

Osteoarthritis (OA) can arise from various factor including trauma, overuse, as well as degeneration 
resulting from age or disease. The specific treatment options will vary based on the severity of the 
condition, and the affected joints. Some common treatments for OA include lifestyle modifications, 
medications, physical therapy, surgery and tissue engineering (TE). For cartilage tissue engineering 
(CTE), three-dimension (3D) scaffolds are made of biocompatible natural polymers, which allow for 
the regeneration of new cartilage tissue. An ideal scaffold should possess biological and mechanical 
properties that closely resemble those of the cartilage tissue, and lead to improved functional of knee. 
These scaffolds are specifically engineered to serve as replacements for damaged and provide 
support to the knee joint. 3D-bioprinted scaffolds are made of biocompatible materials natural 
polymers, which allow for the regeneration of new cartilage. The utilization of 3D bioprinting method 
has emerged as a novel approach for fabricating scaffolds with optimal properties for CTE 
applications. This method enables the creation of scaffolds that closely mimic the native cartilage in 
terms of mechanical characteristics and biological functionality. 
Alginate, that has the capability to fabricate a cartilage replacement customized for each individual 
patient. This polymer exhibits hydrophilicity, biocompatibility, and biodegradability, along with shear -
thinning properties. These unique properties enable alginate to be utilized as a bio-ink for 3D bioprinting 
method. Furthermore, chondrogenesis is the complex process through which cartilage is formed via a 
series of cellular and molecular signaling. Signaling pathway is as a fundamental mechanism in cart ilage 
formation, enhanced by the incorporation of biomolecules and growth factors that induce the 
differentiation of stem cells. Accordingly, ongoing review is focusing to promote of 3D bioprinting scaffolds 
through the utilization of advanced biomolecules-loading of alginate-based that has the capability to 
fabricate a cartilage replacement tailored specifically to each patient's unique needs and anatomical 
requirements. 
Level of evidence: III

Keywords

Main Subjects


  1. Li JS, Tsai TY, Clancy MM, Li G, Lewis CL, Felson DT. Weight loss changed gait kinematics in individuals with obesity and knee pain. Gait Posture. 2019; 68:461-465. doi:https://doi.org/10.1016/j.gaitpost.2018.12.031.
  2. Kan H, Chan P, Chiu K, et al. Non-surgical treatment of knee osteoarthritis. Hong Kong Med J. 2019; 25(2):127. doi:http://dx.doi.org/10.12809/hkmj187600.
  3. Yari D, Ebrahimzadeh MH, Movaffagh J, et al. Biochemical aspects of scaffolds for cartilage tissue engineering; from basic science to regenerative medicine. Arch Bone Jt Surg. 2022; 10(3):229. doi:https://doi.org/10.1586/erd.11.27.
  4. Jung CS, Kim BK, Lee J, Min BH, Park SH. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2017; 15(2):155-162. doi: 10.1007/s13770-017-0104-8.
  5. Ghasemi, F., Jahani, A., Moradi, A., Ebrahimzadeh, M. H., & Jirofti, N. (2023). Different Modification Methods of Poly Methyl Methacrylate (PMMA) Bone Cement for Orthopedic Surgery Applications. Arch Bone Jt Surg, 11(8), 485-492. doi:https://doi.org/10.22038/abjs.2023.71289.3330
  6. Hutmacher DW, Tandon B, Dalton PD. Scaffold design and fabrication. InTissue engineering 2023 (pp. 355-385). Academic Press.
  7. Mahendiran B, Muthusamy S, Sampath S, et al. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol. 2021; 183:564-588. doi:https://doi.org/10.1016/j.ijbiomac.2021.04.179.
  8. Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate based scaffolds for cartilage tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020; 69(4):230-247. doi:https://doi.org/10.1080/00914037.2018.1562924.
  9. Ji X, Lei Z, Yuan M, et al. Cartilage repair mediated by thermosensitive photocrosslinkable TGFβ1-loaded GM-HPCH via immunomodulating macrophages, recruiting MSCs and promoting chondrogenesis. Theranostics. 2020; 10(6):2872. doi:https://doi.org/10.7150/thno.41622.
  10. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, Mousavian A, Movaffagh J, Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg. 2018; 6(2):90.
  11. Zhang Y, Li W, Laurent T, Ding S. Small molecules, big roles–the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci.2012; 125(23):5609-5620. doi:https://doi.org/10.1242/jcs.096032.
  12. Morrison RJ, Nasser HB, Kashlan KN, et al. Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering. The Laryngoscope. 2018; 128(7):E251-E257. doi: https://doi.org/10.1002/lary.27200.
  13. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 2016; 32(1):54-64. doi:https://doi.org/10.1016/j.dental.2015.09.018.
  14. Jahanbakhsh A, Nourbakhsh MS, Bonakdar S, Shokrgozar MA, Haghighipour N. Evaluation of Alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs. Cell Tissue Res. 2020;381(2):255-272. doi:https://doi.org/10.1007/s00441-020-03216-7.
  15. Yeo MG, Kim GH. A cell-printing approach for obtaining hASC-laden scaffolds by using a Collagen/polyphenol bioink. Biofabrication. 2017; 9(2):025004. doi:https://doi.org/10.1088/1758-5090/aa6997.
  16. Stanton M, Samitier J, Sanchez S. Bioprinting of 3D hydrogels. Lab Chip. 2015; 15(15):3111-3115. doi:https://doi.org/10.1039/C5LC90069G.
  17. Mallakpour S, Azadi E, Hussain CM. State-of-the-art of 3D printing technology of Alginate-based hydrogels—an emerging technique for industrial applications. Adv Colloid Interface Sci. 2021; 293:102436. doi: 10.1016/j.cis.2021.102436.
  18. Chen Y, Xiong X, Liu X, et al. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/Alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B. 2020; 8(25):5500-5514. doi:https://doi.org/10.1039/D0TB00060D.
  19. Li H, Liu S, Lin L. Rheological study on 3D printability of Alginate hydrogel and effect of graphene oxide. International Journal of Bioprinting. 2016; 2(2)doi:https://doi.org/10.3390/gels8010028.
  20. T. Somasekharan L, Kasoju N, Raju R, Bhatt A. Formulation and characterization of Alginate dialdehyde, Gelatin, and platelet-rich plasma-based bioink for bioprinting applications. Bioengineering (Basel). 2020; 7(3):108. doi: 10.3390/bioengineering7030108.
  21. Hazur J, Detsch R, Karakaya E, et al. Improving Alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication. 2020; 12(4):045004. doi:https://doi.org/10.1088/1758-5090/ab98e5.
  22. Falcone G, Mazzei P, Piccolo A, et al. Advanced printable hydrogels from pre-crosslinked Alginate as a new tool in semi solid extrusion 3D printing process. Carbohydr Polym. 2022; 276:118746. doi:https://doi.org/10.1016/j.carbpol.2021.118746.
  23. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011; 3(2):021001. doi:https://doi.org/10.1088/1758-5082/3/2/021001.
  24. Chung JH, Naficy S, Yue Z, et al. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013; 1(7):763-773. doi:https://doi.org/10.1039/C3BM00012E.
  25. Kong H-J, Lee KY, Mooney DJ. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer. 2002; 43(23):6239-6246. doi:https://doi.org/10.1016/S0032-3861 (02)00559-1.
  26. Lee J-S, Hong JM, Jung JW, Shim J-H, Oh J-H, Cho D-W. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014; 6(2):024103. doi:https://doi.org/10.1088/1758-5082/6/2/024103.
  27. O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomater Sci. 2022; 10(10):2462-2483 doi:https://doi.org/10.1039/D1BM01540K.
  28. Zhu M, He X, Xin C, Zhu Y, Liu Z. 3D printing of an integrated triphasic MBG-Alginate scaffold with enhanced interface bonding for hard tissue applications. J Mater Sci Mater Med. 2020; 31(12):113. doi:https://doi.org/10.1007/s10856-020-06459-6.
  29. Shanto PC, Park S, Park M, Lee B-T. Physico-biological evaluation of 3D printed dECM/TOCN/Alginate hydrogel based scaffolds for cartilage tissue regeneration. Biomater Adv. 2023; 145:213239. doi:https://doi.org/10.1016/j.bioadv.2022.213239.
  30. Karunanithi P, Murali MR, Samuel S, Raghavendran HRB, Abbas AA, Kamarul T. Three dimensional Alginate-fucoidan composite hydrogel augments the chondrogenic differentiation of mesenchymal stromal cells. Carbohydr Polym. 2016; 147:294-303. doi:https://doi.org/10.1016/j.carbpol.2016.03.102.
  31. Tiwari S, Patil R, Bahadur P. Polysaccharide based scaffolds for soft tissue engineering applications. Polymers. 2018; 11(1):1. doi:https://doi.org/10.3390/polym11010001.
  32. Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl. 2023; 37(7):1243-1258. doi: 10.1177/08853282221132987.
  33. Mohsenifard S, Mashayekhan S, Safari H. A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. J Biomater Appl. 2022; 37(7):1243-1258. doi: 10.1177/08853282221132987.
  34. Theruvath AJ, Mahmoud EE, Wu W, et al. Ascorbic Acid and Iron Supplement Treatment Improves Stem Cell–Mediated Cartilage Regeneration in a Minipig Model. Am J Sports Med. 2021; 49(7):1861-1870. doi:https://doi.org/10.1177/036354652110057.
  35. Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage. 2013; 21(12):1824-1833. doi:https://doi.org/10.1016/j.joca.2013.08.024.
  36. Tajfiroozeh F, Moradi A, Shahidi F, et al. Fabrication and characterization of gallic-acid/nisin loaded electrospun core/shell chitosan/polyethylene oxide nanofiberous membranes with free radical scavenging capacity and antimicrobial activity for food packing applications. Food Bioscience. 2023; 53:102529. doi:https://doi.org/10.1016/j.fbio.2023.102529.
  37. Movaffagh J, Bazzaz F, Yazdi AT, et al. Wound Healing and Antimicrobial Effects of Chitosan-hydrogel/Honey Compounds in a Rat Full-thickness Wound Model. Wounds. 2019; 31(9):228-235. doi:https://doi.org/10.17488/rmib.43.1.2.
  38. Tirella A, Orsini A, Vozzi G, Ahluwalia A. A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication. 2009; 1(4):045002. doi:https://doi.org/10.1088/1758-5082/1/4/045002.
  39. Kuo CK, Ma PX. Ionically crosslinked Alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22(6):511-521. doi:https://doi.org/10.1016/S0142-9612 (00)00201-5.
  40. Jirofti, N., Poorsargol, M., Sarhaddi, F., Jahani, A., Kadkhoda, J., Kalalinia, F., . . . Taboada, P. (2023). Polymer stabilized, phenytoin-loaded nanomicelles as promising nanocarriers: In silico and in vitro evaluations. European Polymer Journal, 196, 112228. doi:https://doi.org/10.1016/j.eurpolymj.2023.112228
  41. Liu Q, Li Q, Xu S, Zheng Q, Cao X. Preparation and properties of 3D printed Alginate–chitosan polyion complex hydrogels for tissue engineering. Polymers. 2018; 10(6):664. doi:https://doi.org/10.3390/polym10060664.
  42. Hong J, Kim B-S, Char K, Hammond PT. Inherent charge-shifting polyelectrolyte multilayer blends: a facile route for tunable protein release from surfaces. Biomacromolecules. 2011; 12(8):2975-2981. doi:https://doi.org/10.1021/bm200566k.
  43. Reed S, Lau G, Delattre B, Lopez DD, Tomsia AP, Wu BM. Macro-and micro-designed chitosan-Alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication. 2016; 8(1):015003. doi:https://doi.org/10.1088/1758-5090/8/1/015003.
  44. Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci. 2021; 9(12):4246-4259. doi:https://doi.org/10.1039/D0BM01852J.
  45. Del Bakhshayesh AR, Asadi N, Alihemmati A, et al. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng. 2019; 13:1-21. doi:https://doi.org/10.1186/s13036-019-0209-9.
  46. Naranda J, Bračič M, Vogrin M, Maver U. Recent advancements in 3D printing of polysaccharide hydrogels in cartilage tissue engineering. Materials. 2021; 14(14):3977. doi: https://doi.org/10.3390/ma14143977.
  47. Li Z, Zhang M. Chitosan–Alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A. 2005; 75(2):485-493. doi: https://doi.org/10.1002/jbm.a.30449.
  48. Frampton J, Hynd M, Shuler M, Shain W. Fabrication and optimization of Alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater. 2011; 6(1):015002. doi:https://doi.org/10.1088/1748-6041/6/1/015002.
  49. Holder A, Badiei N, Hawkins K, Wright C, Williams P, Curtis D. Control of Collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft matter. 2018; 14(4):574-580. doi:https://doi.org/10.1039/C7SM01933E.
  50. Ramachandran GN. Structure of Collagen at the molecular level. Treatise of Collagen. 1967; 1:103-183. doi:https://doi.org/10.1016/S0945-053X (97)90030-5.
  51. Ort C, Chen Y, Ghagre A, Ehrlicher A, Moraes C. Bioprintable, stiffness-tunable Collagen-Alginate microgels for increased throughput 3D cell culture studies. ACS Biomater Sci Eng. 2021; 7(6):2814-2822. doi:https://doi.org/10.1021/acsbiomaterials.1c00129.
  52. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-Alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018:83:195-201. doi:https://doi.org/10.1016/j.msec.2017.09.002.
  53. van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res. 2017; 21(1):1-19. doi:https://doi.org/10.1186/s40824-017-0106-6.
  54. Wollensak G. Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol. 2006; 17(4):356-360. doi:https://doi.org/10.1097/01.icu.0000233954.86723.25.
  55. Mrochen M. Current status of accelerated corneal cross-linking. Indian J Ophthalmol. 2013; 61(8):428-429. doi:https://doi.org/10.4103/0301-4738.116075.
  56. Lee HJ, Kim YB, Ahn SH, et al. A new approach for fabricating Collagen/ECM‐based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater. 2015; 4(9):1359-1368. doi: https://doi.org/10.1002/adhm.201500193.
  57. Morgan FL, Moroni L, Baker MB. Dynamic bioinks to advance bioprinting. Adv Healthc Mater. 2020; 9(15):1901798. doi: https://doi.org/10.1002/adhm.201901798.
  58. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020; 32(12):1906423. doi: https://doi.org/10.1002/adma.201906423.
  59. Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering. Adv Healthc Mater. 2019; 8(7):1801501. doi:http://dx.doi.org/10.1002/adhm.201801501.
  60. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of Gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015; 73:254-271. doi:https://doi.org/10.1016/j.biomaterials.2015.08.045.
  61. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered Gelatin methacrylate hydrogels. Biomaterials. 2010; 31(21):5536-5544. doi:https://doi.org/10.1016/j.biomaterials.2010.03.064.
  62. Wang B, Diaz-Payno PJ, Browe DC, et al. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater. 2021; 128:130-142. doi:https://doi.org/10.1016/j.actbio.2021.04.016.
  63. Saberi, A., Kouhjani, M., Yari, D., Jahani, A., Asare-Addo, K., Kamali, H., & Nokhodchi, A. (2023). Development, recent advances, and updates in binary, ternary co-amorphous systems, and ternary solid dispersions. Journal of Drug Delivery Science and Technology, 86, 104746. doi:https://doi.org/10.1016/j.jddst.2023.104746
  64. Li T-F, O’Keefe RJ, Chen D. TGF-β signaling in chondrocytes. Front Biosci. 2005; 10:681. doi:https://doi.org/10.2741/1563.
  65. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft matter. 2012; 8(12):3280-3294. doi:https://doi.org/10.1039/C2SM06463D.
  66. Moradi A. Development of bovine cartilage extracellular matrix as a potential scaffold for chondrogenic induction of human dermal fibroblasts. University of Malaya; 2015.
  67. Li H, Qi Z, Zheng S, et al. The application of Hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Advances in Materials Science and Engineering. 2019; 2019:1-12. doi:https://doi.org/10.1155/2019/3027303.
  68. Larsen NE, Lombard KM, Parent EG, Balazs EA. Effect of hylan on cartilage and chondrocyte cultures. J Orthop Res. 1992; 10(1):23-32. doi: https://doi.org/10.1002/jor.1100100104.
  69. Oerther S, Le Gall H, Payan E, et al. Hyaluronate‐Alginate gel as a novel biomaterial: Mechanical properties and formation mechanism. Biotechnol Bioeng. 1999; 63(2):206-215. doi:https://doi.org/10.1002/ (SICI) 1097-0290.
  70. Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of Hyaluronic acid and Alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020; 106:114-123. doi:https://doi.org/10.1016/j.actbio.2020.01.046.

 

  1. Klemm D, Philpp B, Heinze T, Heinze U, Wagenknecht W, eds. Comprehensive Cellulose chemistry. Volume 1: Fundamentals and analytical methods. 1st Ed. Wiley-VCH Verlag GmbH; 1998.
  2. Sultan S, Siqueira G, Zimmermann T, Mathew AP. 3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering. 2017; 2:29-34. doi:https://doi.org/10.1016/j.cobme.2017.06.002.
  3. Jacek P, Szustak M, Kubiak K, Gendaszewska-Darmach E, Ludwicka K, Bielecki S. Scaffolds for chondrogenic cells cultivation prepared from bacterial Cellulose with relaxed fibers structure induced genetically. Nanomaterials (Basel). 2018; 8(12):1066. doi:https://doi.org/10.3390/nano8121066.
  4. Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2023; 20:137-163. doi:https://doi.org/10.1016/j.bioactmat.2022.05.018.
  5. Möller T, Amoroso M, Hägg D, et al. In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast Reconstr Surg Glob Open.2017 Feb 15; 5(2):e1227. doi: 10.1097/GOX.0000000000001227.