Different Modification Methods of Poly Methyl Methacrylate (PMMA) Bone Cement for Orthopedic Surgery Applications

Document Type : CURRENT CONCEPTS REVIEW

Authors

1 1 Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran 2 Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran

2 1 Orthopedic Research Center, Mashhad University of Medical Science, Mashhad, Iran 2 Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran 3 Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran

Abstract

In clinical practice, bone defects that occur alongside tumors, infections, or other bone diseases present 
significant challenges in the orthopedic field. Although autologous and allogeneic grafts are introduced 
as common traditional remedies in this field, their applications have a series of limitations. Various 
approaches have been attempted to treat large and irregularly shaped bone defects; however, their 
success has been less than optimal due to a range of issues related to material and design. However , 
in recent years, additive manufacturing has emerged as a promising solution to the challenge of creating 
implants that can be perfectly tailored to fit individual defects during surgical procedures. By fabrication 
of constructs with specific designs using this technique, surgeons are able to achieve much better 
outcomes for patients. Polymers, ceramics, and metals have been used as biomaterials in Orthopedic 
Surgery fields. Polymeric scaffolds have been used successfully in total joint replacements, soft tissue 
reconstruction, joint fusion, and as fracture fixation devices. The use of polymeric biomaterials, either 
in the form of pre-made solid scaffolds or injectable pastes that can harden in situ, shows great promise 
as a substitute for commonly used autografts and allografts. Polymethyl methacrylate (PMMA) is one 
of the most widely used polymer cement in orthopedic surgery. The present paper begins with an 
introduction and will then provide an overview of the properties, advantages/disadvantages, 
applications, and modifications of PMMA bone cement.
 Level of evidence: III

Keywords

Main Subjects


1. Sabater-Martos M, Verdejo MA, Morata L, et al. Antimicrobials 
in polymethylmethacrylate: from prevention to prosthetic 
joint infection treatment: basic principles and risk of 
resistance. Arthroplasty. 2023; 5(1):1-13. doi: 
10.1186/s42836-023-00166-7.
2. Rohm O. On the polymerization products of acrylic acid. 
Chemistry (dissertation) University of Tubingen, Tubingen. 
1901.
3. Charnley J. The bonding of prostheses to bone by cement. Clin 
Orthop Relat Res.1964; 46(3):518-529. doi: 10.1007/s11999-
010-1545-8.
4. Smith DC. The genesis and evolution of acrylic bone cement. 
Orthop Clin North Am. 2005; 36(1):1-10. doi: 
10.1016/j.ocl.2004.06.012.
5. Huzum B, Puha B, Necoara RM, et al. Biocompatibility 
assessment of biomaterials used in orthopedic devices: An overview. Exp Ther Med. 2021; 22(5):1-9. doi: 
10.3892/etm.2021.10750.
6. Corró S, García-Albó E, Andrés-Peiró JV, Teixidor J, Tomás J. 
bone defect management and augmentation of distal femoral 
fractures with polymethylmethacrylate bone cement. Journal 
of Musculoskeletal Research. 2022; 25(03):2250013. doi: 
10.1142/S0218957722500130.
7. Maitz MF. Applications of synthetic polymers in clinical 
medicine. Biosurface and Biotribology. 2015;1(3):161-176. 
doi:10.1016/j.bsbt.2015.08.002.
8. Smirnov V, Goldberg M, Khairutdinova D, et al. Synthesis and 
properties of bone cement materials in the calcium 
phosphate–calcium sulfate system. Inorganic Materials. 2017; 
53:1075-1079. doi: 10.1134/S0020168517100132.
9. Jaeblon T. Polymethylmethacrylate: properties and 
contemporary uses in orthopaedics. J Am Acad Orthop Surg. 
2010; 18(5):297-305. doi: 10.5435/00124635-201005000-
00006.
10. Lewis G. Properties of acrylic bone cement: state of the art 
review. J Biomed Mater Res. 1997; 38(2):155-182. doi: 
10.1002/(SICI)1097.
11. Lewis G. Properties of antibiotic‐loaded acrylic bone cements 
for use in cemented arthroplasties: a state‐of‐the‐art review. J 
Biomed Mater Res B Appl Biomater. 2009; 89(2):558-574. 
doi: 10.1002/jbm.b.31220.
12. Lewis G. Antibiotic-free antimicrobial poly (methyl 
methacrylate) bone cements: A state-of-the-art review. World 
J Orthop. 2022;13(4):339. doi:10.5312/wjo.v13.i4.339.
13. Graham J, Pruitt L, Ries M, Gundiah N. Fracture and fatigue 
properties of acrylic bone cement: the effects of mixing 
method, sterilization treatment, and molecular weight. J 
Arthroplasty. 2000; 15(8):1028-1035. 
doi:10.1054/arth.2000.8188.
14. An Y, Alvi F, Kang Q, et al. Effects of sterilization on implant 
mechanical property and biocompatibility. nt J Artif Organs. 
2005; 28(11):1126-1137. doi: 
10.1177/039139880502801110.
15. Harper E, Braden M, Bonfield W, Dingeldein E, Wahlig H. 
Influence of sterilization upon a range of properties of 
experimental bone cements. J Mater Sci Mater Med. 1997; 
8(12):849-853. doi: 10.1023/A:1018545519964.
16. Mjöberg B, Pettersson H, Rosenqvist R, Rydholm A. Bone 
cement, thermal injury and the radiolucent zone. Acta Orthop 
Scand. 1984; 55(6):597-600. doi: 
10.3109/17453678408992403.
17. Urrutia J, Bono CM, Mery P, Rojas C. Early histologic changes 
following polymethylmethacrylate injection (vertebroplasty) 
in rabbit lumbar vertebrae. Spine (Phila Pa 1976). 2008; 
33(8):877-882. doi:10.1097/BRS.0b013e31816b46a5.
18. Donaldson A, Thomson H, Harper N, Kenny N. Bone cement 
implantation syndrome. Br J Anaesth. 2009; 102(1):12-22. 
doi:https://doi.org/10.1093/bja/aen328.
19. Zhang Jd, Poffyn B, Sys G, Uyttendaele D. Comparison of 
vertebroplasty and kyphoplasty for complications. Orthop 
Surg. 2011; 3(3):158-160. doi:10.1111/j.1757-
7861.2011.00141.x.
20. Corcos G, Dbjay J, Mastier C, et al. Cement leakage in 
percutaneous vertebroplasty for spinal metastases: a 
retrospective evaluation of incidence and risk factors. Spine 
(Phila Pa 1976). 2014; 39(5):E332-E338. 
doi:10.1097/BRS.0000000000000134.
21. Severi C, Sferra R, Scirocco A, et al. Contribution of intestinal 
smooth muscle to Crohn’s disease fibrogenesis. Eur J 
Histochem. 2014; 58(4).doi:10.4081/ejh.2014.2457.
22. Samad HA, Jaafar M, Othman R, Kawashita M, Razak NHA. 
New bioactive glass-ceramic: synthesis and application in 
PMMA bone cement composites. B Biomed Mater Eng. 2011; 
21(4):247-258. doi: 10.3233/BME-2011-0673.
23. De Mori A, Di Gregorio E, Kao AP, et al. Antibacterial PMMA 
composite cements with tunable thermal and mechanical 
properties. ACS Omega. 2019; 4(22):19664-19675.
doi:10.1021/acsomega.9b02290.
24. Khandaker M, Vaughan MB, Morris TL, White JJ, Meng Z. 
Effect of additive particles on mechanical, thermal, and cell 
functioning properties of poly (methyl methacrylate) cement. 
Int J Nanomedicine. 2014; 9:2699. doi:10.2147/IJN.S61964.
25. Zapata MEV, Ruiz Rojas LM, Mina Hernández JH, DelgadoOspina J, Tovar CDG. Acrylic Bone Cements Modified with 
Graphene Oxide: Mechanical, Physical, and Antibacterial 
Properties. Polymers (Basel). 2020; 12(8):1773. doi: 
10.3390/polym12081773.
26. Wang Y, Shen S, Hu T, et al. Layered double hydroxide 
modified bone cement promoting osseointegration via 
multiple osteogenic signal pathways. ACS Nano. 2021; 
15(6):9732-9745. doi:10.1021/acsnano.1c00461.
27. Tsukeoka T, Suzuki M, Ohtsuki C, et al. Mechanical and 
histological evaluation of a PMMA-based bone cement 
modified with γ-methacryloxypropyltrimethoxysilane and 
calcium acetate. Biomaterials. 2006; 27(21):3897-3903. 
doi:10.1016/j.biomaterials.2006.03.002.
28. Robo C, Hulsart-Billström G, Nilsson M, Persson C. In vivo 
response to a low-modulus PMMA bone cement in an ovine 
model. Acta Biomater. 2018; 72:362-370. 
doi:10.1016/j.actbio.2018.03.014.
29. Phakatkar AH, Shirdar MR, Qi M-l, et al. Novel PMMA bone 
cement nanocomposites containing magnesium phosphate 
nanosheets and hydroxyapatite nanofibers. Mater Sci Eng C 
Mater Biol Appl. 2020; 109:110497. 
doi:10.1016/j.msec.2019.110497.
30. Zhu J, Yang S, Cai K, et al. Bioactive poly (methyl 
methacrylate) bone cement for the treatment of osteoporotic 
vertebral compression fractures. Theranostics. 2020; 
10(14):6544. doi:10.7150/thno.44428.
31. Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of zinc, 
magnesium, and iron ions on bone tissue engineering. ACS 
Biomater Sci Eng. 2022; 8(6):2321-2335. 
doi:10.1021/acsbiomaterials.2c00368.
32. Maluta T, Lavagnolo U, Segalla L, et al. Evaluation of 
biocompatibility, osteointegration and biomechanical 
properties of the new Calcemex® cement: An in vivo study. 
Eur J Histochem. 2022; 66(1).doi:10.4081/ejh.2022.3313.
33. Wang C, Tong J. Interfacial strength of novel 
PMMA/HA/nanoclay bone cement. Biomed Mater Eng. 2008; 
18(6):367-375. doi: 10.3233/BME-2008-0553.
34. Canul‐Chuil A, Vargas‐Coronado R, Cauich‐Rodríguez J, 
Martínez‐Richa A, Fernandez E, Nazhat S. Comparative study 
of bone cements prepared with either HA or α‐TCP and 
functionalized methacrylates. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of 
the Society for Biomaterials, the Japanese Society for 
Biomaterials, and the Australian Society for Biomaterials and 
the Korean Society for Biomaterials. 2003; 64(1):27-37. 
doi:10.1002/jbm.b.10486.
35. Goto K, Hashimoto M, Takadama H, et al. Mechanical, setting, 
and biological properties of bone cements containing micronsized titania particles. J Mater Sci Mater Med. 2008; 
19(3):1009-16. doi: 10.1007/s10856-007-3076-8.
36. Shinzato S, Nakamura T, Kokubo T, Kitamura Y. A new 
bioactive bone cement: effect of glass bead filler content on 
mechanical and biological properties. J Biomed Mater Res. 
2001; 54(4):491-500. doi: 10.1002/1097-
4636(20010315)54:4<491::AID-JBM40>3.0.CO;2-O.
37. Siddique A, Cooke ME, Weber MH, Rosenzweig DH. 
Nanoparticle-Functionalized Acrylic Bone Cement for Local 
Therapeutic Delivery to Spinal Metastases. bioRxiv. 
2023:2023.02. 06.527220. doi:10.1101/2023.02.06.527220.
38. Świeczko-Żurek B, Zieliński A, Bociąga D, Rosińska K, 
Gajowiec G. Influence of Different Nanometals Implemented 
in PMMA Bone Cement on Biological and Mechanical 
Properties. Nanomaterials (Basel). 2022; 12(5):732. doi: 
org/10.3390/nano12050732.
39. Hench LL. Biomaterials, an interfacial approach. Biophysics 
and bioengineering series. 1982; 4:62-86. doi: 10009762068.
40. Kokubo T, Ito S, Huang Z, et al. Ca, P‐rich layer formed on 
high‐strength bioactive glass‐ceramic A‐W. J Biomed Mater 
Res. 1990;24(3):331-343. doi: 10.1002/jbm.820240306.
41. Nakhaei M, Jirofti N, Ebrahimzadeh MH, Moradi A. Different 
methods of hydroxyapatite‐based coatings on external fixator 
pin with high adhesion approach. Plasma Processes and 
Polymers. 2023:e2200219. doi: 10.1002/ppap.202200219.
42. Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T. 
Mechanical properties of a new type of apatite-containing 
glass-ceramic for prosthetic application. Journal of Materials 
Science. 1985; 20:2001-2004. doi: 10.1007/BF01112282.
43. Movaffagh J, Bazzaz BSF, Taherzadeh Z, et al. Evaluation of 
wound-healing efficiency of a functional Chitosan/Aloe vera 
hydrogel on the improvement of re-epithelialization in full 
thickness wound model of rat. J Tissue Viability. 2022; 
31(4):649-656. doi:0.1016/j.jtv.2022.07.009.
44. Kazemzadeh G, Jirofti N, Kazemi Mehrjerdi H, et al. A review 
on developments of in-vitro and in-vivo evaluation of hybrid 
PCL-based natural polymers nanofibers scaffolds for vascular 
tissue engineering. Journal of Industrial Textiles. 2022; 
52:15280837221128314. doi: 
10.1177/15280837221128314.
45. Rahnama S, Movaffagh J, Shahroodi A, et al. Development and 
characterization of the electrospun melittin-loaded chitosan 
nanofibers for treatment of acne vulgaris in animal model. 
Journal of Industrial Textiles. 2022; 52:15280837221112410. 
doi: 10.1177/15280837221112410.
46. Jirofti N, Shahroodi A, Movaffagh J, Fazly Bazzaz BS, Robbati 
RY, Hashemi M. Fabrication and Structural, Mechanical, and 
Biological Characterization of Vancomycin-Loaded ChitosanHydroxyapatite-Gelatin Beads for Local Treatment of 
Osteomyelitis. Journal of Mazandaran University of Medical 
Sciences. 2023; 33(220):1-18. 
47. Albanna MZ, Bou-Akl TH, Blowytsky O, Walters III HL, 
Matthew HW. Chitosan fibers with improved biological and 
mechanical properties for tissue engineering applications. J 
Mech Behav Biomed Mater. 2013; 20:217-226. 
doi:10.1016/j.jmbbm.2012.09.012.
48. Tunney MM, Brady AJ, Buchanan F, Newe C, Dunne NJ. 
Incorporation of chitosan in acrylic bone cement: effect on 
antibiotic release, bacterial biofilm formation and mechanical 
properties. J Mater Sci Mater Med. 2008; 19:1609-1615. doi: 
10.1007/s10856-008-3394-5.
49. Baroud G, Vant C, Wilcox R. Long-term effects of 
vertebroplasty: adjacent vertebral fractures. J Long Term Eff 
Med Implants. 2006; 16(4):265-80. doi: 
10.1615/jlongtermeffmedimplants.v16.i4.10.
50. Pflugmacher R, Schroeder R-J, Klostermann C. Incidence of 
adjacent vertebral fractures in patients treated with balloon 
kyphoplasty: two years’ prospective follow-up. Acta Radiol. 
2006; 47(8):830-840. doi: 10.1080/02841850600854928.
51. Chen X-s, Jiang J-m, Sun P-d, Zhang Z-f, Ren H-l. How the 
clinical dosage of bone cement biomechanically affects 
adjacent vertebrae. J Orthop Surg Res. 2020; 15:1-8. doi: 
10.1186/s13018-020-01906-0.
52. Boger A, Heini P, Windolf M, Schneider E. Adjacent vertebral 
failure after vertebroplasty: a biomechanical study of lowmodulus PMMA cement. Eur Spine J. 2007; 16:2118-2125. 
doi: 10.1007/s00586-007-0473-0.
53. Robo C, Wenner D, Ubhayasekera SKA, Hilborn J, ÖhmanMägi C, Persson C. Functional properties of low-modulus 
PMMA bone cements containing linoleic acid. J Funct 
Biomater. 2021; 12(1):5. doi: 10.3390/jfb12010005.
54. Ayyachi T, Pappalardo D, Finne‐Wistrand A. Defining the role 
of linoleic acid in acrylic bone cement. Journal of Applied 
Polymer Science. 2022; 139(25):e52409. doi: 
10.1002/app.52409.
55. Fahmy HM, Ebrahim NM, Gaber MH. In-vitro evaluation of 
copper/copper oxide nanoparticles cytotoxicity and 
genotoxicity in normal and cancer lung cell lines. J Trace Elem 
Med Biol. 2020; 60:126481. 
doi:10.1016/j.jtemb.2020.126481.
56. Greulich C, Diendorf J, Gessmann J, et al. Cell type-specific 
responses of peripheral blood mononuclear cells to silver 
nanoparticles. Acta Biomater. 2011; 7(9):3505-3514. 
doi:10.1016/j.actbio.2011.05.030.
57. Sebastian S, Liu Y, Christensen R, Raina DB, Tägil M, Lidgren 
L. Antibiotic containing bone cement in prevention of hip and 
knee prosthetic joint infections: a systematic review and 
meta-analysis. J Orthop Translat. 2020; 23:53-60. 
doi:10.1016/j.jot.2020.04.005.
58. Shen S-C, Letchmanan K, Chow PS, Tan RBH. Antibiotic 
elution and mechanical property of TiO2 nanotubes 
functionalized PMMA-based bone cements. J Mech Behav 
Biomed Mater. 2019; 91:91-98. 
doi:10.1016/j.jmbbm.2018.11.020.
59. Kalalinia F, Taherzadeh Z, Jirofti N, et al. Evaluation of wound 
healing efficiency of vancomycin-loaded electrospun 
chitosan/poly ethylene oxide nanofibers in full thickness 
wound model of rat. Int J Biol Macromol. 2021; 177:100-110. 
doi:10.1016/j.ijbiomac.2021.01.209.
60. Jirofti N, Mohebbi-Kalhori D, Masoumi R. Enhancing 
biocompatibility of PCL/PU nano-structures to control the water wettability by NaOH hydrolysis treatment for tissue 
engineering applications. Journal of Industrial Textiles. 2022; 
51(2_suppl):3278S-3296S. doi: 
10.1177/1528083720963268.
61. Woldemariam MH, Belingardi G, Koricho EG, Reda DT. Effects 
of nanomaterials and particles on mechanical properties and 
fracture toughness of composite materials: A short review. 
AIMS Mater Sci. 2019; 6:1191-1212. 
doi:10.3934/matersci.2019.6.1191.
62. Chou CC, Chang JL, Zen JM. Spherical and Anisotropic Copper 
Nanomaterials in Medical Diagnosis. Nanotechnologies for 
the Life Sciences: Online. 2007. doi: 
10.1002/9783527610419.ntls0124.
63. Bapat RA, Chaubal TV, Joshi CP, et al. An overview of 
application of silver nanoparticles for biomaterials in 
dentistry. Mater Sci Eng C Mater Biol Appl. 2018; 91:881-898. 
doi:10.1016/j.msec.2018.05.069.
64. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new 
generation of nanoproduct in biomedical applications. Trends 
Biotechnol. 2010; 28(11):580-588. 
doi:10.1016/j.tibtech.2010.07.006.
65. Wekwejt M, Moritz N, Świeczko-Żurek B, Pałubicka A. 
Biomechanical testing of bioactive bone cements–a 
comparison of the impact of modifiers: antibiotics and 
nanometals. Polymer Testing. 2018; 70:234-243. 
doi:10.1016/j.polymertesting.2018.07.014.
66. Wekwejt M, Michalska-Sionkowska M, Bartmański M, et al. 
Influence of several biodegradable components added to 
pure and nanosilver-doped PMMA bone cements on its 
biological and mechanical properties. Mater Sci Eng C Mater 
Biol Appl. 2020; 117:111286. 
doi:10.1016/j.msec.2020.111286.
67. Bhattacharya K, Mukherjee SP, Gallud A, et al. Biological 
interactions of carbon-based nanomaterials: From coronation 
to degradation. Nanomedicine. 2016; 12(2):333-351. 
doi:10.1016/j.nano.2015.11.011.
68. Paz E, Ballesteros Y, Abenojar J, Del Real J, Dunne NJ. 
Graphene oxide and graphene reinforced PMMA bone 
cements: Evaluation of thermal properties and 
biocompatibility. Materials (Basel). 2019; 12(19):3146. doi: 
10.3390/ma12193146.
69. Xu S-J, Qiu Z-Y, Wu J-J, et al. Osteogenic differentiation gene 
expression profiling of hMSCs on hydroxyapatite and 
mineralized collagen. Tissue Eng Part A. 2016; 22(1-2):170-
181. doi: 10.1089/ten.tea.2015.0237.
70. Satish BRJ, Thadi M, Thirumalaisamy S, Sunil A, 
Basanagoudar PL, Leo B. How Much Bone Cement Is Utilized 
for Component Fixation in Primary Cemented Total Knee 
Arthroplasty? Arch Bone Jt Surg. 2018 Sep;6(5):381-389. 
PMID: 30320178; PMCID: PMC6168233.