Document Type: RESEARCH PAPER

Authors

1 Arak University of Medical Sciences, Arak, Iran

2 Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran

3 Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of medical Scienses, Tehran, Iran

Abstract

Background: Hamstring tendons are secondary hip extensors. Their harvest for graft in anterior cruciate ligament
(ACL) reconstruction may create deleterious effect on hip extension strength. This is of particular importance in sports
that need powerful hip extension force like climbing and sprinting. Due to scarcity of a comprehensive study in this
area, we designed this prospective study to evaluate hip extension strength following ACL reconstruction using different
types of grafts.
Methods: Fifty eight patients were enrolled in this prospective non-randomized case control study to compare
isokinetic hip extension strength following ACL reconstruction with different graft types. Twenty patients in group
A (both Semitendinosus and Gracilis tendons autograft (ST-G)), 14 patients in group B (Tibialis Posterior tendon
allograft (Allograft)), 12 patients in group C (bone-patellar tendon-bone autograft (BPTB)) and 12 patients in group D
(only semitendinosus autograft (ST)) were studied. Hip extension strength was tested post-operatively at three- and
six-month periods using a Biodex isokinetic testing machine at a speed of 30 degree per second in operated (cases)
and non-operated (controls) limbs.
Results: There was a significant increase in hip extension force between three and six month intervals in all four
groups and in both operated (case) and non-operated (control) limbs (P<0.05, 95% CI). However, there was more
increase in case limbs in comparison to control limbs. There was no significant difference in hip extension strength
among all four groups (both in case and control limbs) in the third- and the sixth-month post-operative tests.
Conclusion: Graft type had no effect on hip extension strength following ACL reconstruction, and the harvest of one or
both hamstrings had no deleterious effect on hip extension force.
Level of evidence: III

Keywords

Main Subjects

1. Mostafaee N, Yazdi MJ, Negahban H, Goharpey S,
Mehravar M, Pirayeh N. Responsiveness of static and
dynamic postural balance measures in patients with
anterior cruciate ligament reconstruction following
physiotherapy intervention. Arch Bone Jt Surg. 2017;
5(3):153-67.
2. Tahami SM, Rad SM. Outcome of ACL reconstruction
and concomitant articular injury treatment. Arch
Bone Jt Surg. 2015; 3(4):260-3.
3. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon
BD, Demaio M, et al. Understanding and preventing
noncontact anterior cruciate ligament injuries: a
review of the hunt valley II meeting, January 2005.
Am J Sports Med. 2006; 34(9):1512-32.
4. Gianotti SM, Marshall SW, Hume PA, Bunt L. Incidence
of anterior cruciate ligament injury and other knee
ligament injuries: a national population-based study. J
Sci Med Sport. 2009; 12(6):622-7.
5. Mohtadi, N. Development and validation of the quality
of life outcome measure (questionnaire) for chronic
anterior cruciate ligament deficiency. Am J Sports
Med. 1998; 26(3):350-9.
6. Aglietti P, Buzzi R, Zaccherotti G, De Biase P. Patellar
tendon versus doubled semitendinosus and gracilis
tendons for anterior cruciate ligament reconstruction.
Am J Sports Med. 1994; 22(2):211-7.
7. Noyes FR, Butler DL, Grood ES, Zernicke RF, HefzyMS.
Biomechanical analysis of human ligament grafts
used in knee-ligament repairs and reconstructions. J
Bone Joint Surg Am. 1984; 66(3):344-52.

8. Shelbourne KD, Gray T. Results of anterior cruciate
ligament reconstruction based on meniscus and
articular cartilage status at the time of surgery. Fiveto
fifteen-year evaluations. Am J Sports Med. 2000;
28(4):446-52.
9. Kartus J, Stener S, Lindahl S, Engström B, Eriksson
BI, Karlsson J. Factors affecting donor-site morbidity
after anterior cruciate ligament reconstruction using
bone–patellar tendon–bone autografts. Knee Surg
Sports Traumatol Arthrosc. 1997; 5(4):222-8.
10. Kohn D, Sander-Beuermann A. Donor-site morbidity
after harvest of a bone tendon-bone patellar tendon
autograft. Knee Surg Sports Traumatol Arthrosc.
1994; 2(4):219-23.
11. Miller MD, Nichols T, Butler CA. Patella fracture
and proximal patellar tendon rupture following
arthroscopic anterior cruciate ligament
reconstruction. Arthroscopy. 1999; 15(6):640-3.
12. Sachs RA, Daniel DM, Stone ML, Garfein RF.
Patellofemoral problems after anterior cruciate
ligament reconstruction. Am J Sports Med. 1989;
17(6):760-5.
13. Shino K, Nakagawa S, Inoue M, Horibe S, Yoneda M.
Deterioration of patellofemoral articular surfaces
after anterior cruciate ligament reconstruction. Am J
Sports Med. 1993; 21(2):206-11.
14. Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J,
Linklater J. A 10-year comparison of anterior cruciate
ligament reconstructions with hamstring tendon and
patellar tendon autograft: a controlled, prospective

trial. Am J Sports Med. 2007; 35(4):564-74.
15. Biau DJ, Tournoux C, Katsahian S, Schranz PJ, Nizard
RS. Bone-patellar tendon-bone autografts versus
hamstring autografts for reconstruction of anterior
cruciate ligament: meta-analysis. BMJ. 2006;
332(7548):995-1001.
16. Barenius B, Nordlander M, Ponzer S, Tidermark J,
Eriksson K. Quality of life and clinical outcome after
anterior cruciate ligament reconstruction using
patellar tendon graft or quadrupled semitendinosus
graft: an 8-year follow-up of a randomized controlled
trial. Am J Sports Med. 2010; 38(8):1533-41.
17. Geoghegan JM, Geutjens GG, Downing ND, Colclough
K, King RJ. Hip extension strength following hamstring
tendon harvest for ACL reconstruction. Knee. 2007;
14(5):352-6.
18. Makihara Y, Nishino A, Fukubayashi T, Kanamori A.
Decrease of knee flexion torque in patients with ACL
reconstruction: combined analysis of the architecture
and function of the knee flexor muscles. Knee Surg
Sports Traumatol Arthrosc. 2006; 14(4):310-7.
19. Nakamae A, Deie M, Yasumoto M, Adachi N, Kobayashi
K, Yasunaga Y, et al. Three-dimensional computed
tomography imaging evidence of regeneration of
the semitendinosus tendon harvested for anterior
cruciate ligament reconstruction: a comparison with
hamstring muscle strength. J Comput Assist Tomogr.
2005; 29(2):241-5.
20. Nishino A, Sanada A, Kanehisa H, Fukubayashi T. Kneeflexion
torque and morphology of the semitendinosus
after ACL reconstruction. Med Sci Sports Exerc. 2006;
38(11):1895-900.
21. Papandrea P, Vulpiani MC, Ferretti A, Conteduca F.
Regeneration of the semitendinosus tendon harvested
for anterior cruciate ligament reconstruction:
evaluation using ultrasonography. Am J Sports Med.
2000; 28(4):556-61.
22. Rispoli DM, Sanders TG, Miller MD, Morrison WB.
Magnetic resonance imaging at different time
periods following hamstring harvest for anterior
cruciate ligament reconstruction. Arthroscopy.
2001; 17(1):2-8.
23. Simonian PT, Harrison SD, Cooley VJ, Escabedo EM,
Den DA, Larson RV. Assessment of morbidity of
semitendinosus and gracilis tendon harvest for ACL
reconstruction. Am J Knee Surg. 1997; 10(2):54-9.
24. Tadokoro K, Matsui N, Yagi M, Kuroda R, Kurosaka
M, Yoshiya S. Evaluation of hamstring strength
and tendon regrowth after harvesting for anterior
cruciate ligament reconstruction. Am J Sports Med.
2004; 32(7):1644-50.
25. Takeda Y, Kashiwaguchi S, Matsuura T, Higashida
T, Minato A. Hamstring muscle function after
tendon harvest for anterior cruciate ligament
reconstruction: evaluation with T2 relaxation time
of magnetic resonance imaging. Am J Sports Med.
2006; 34(2):281-8.
26. Landes S, Nyland J, Elmlinger B, Tillett E, Caborn
D. Knee flexor strength after ACL reconstruction:
comparison between hamstring autograft, tibialis
anterior allograft, and non-injured controls. Knee
Surg Sports Traumatol Arthrosc. 2010; 18(3):317-24.
27. Nakamura N, Horibe S, Sasaki S, Kitaguchi T, Tagami
M, Mitsuoka T, et al. Evaluation of active knee flexion
and hamstring strength after anterior cruciate
ligament reconstruction using hamstring tendons.
Arthroscopy. 2002; 18(6):598-602.
28. Tashiro T, Kurosawa H, Kawakami A, Hikita A, Fukui
N. Influence of medial hamstring tendon harvest on
knee flexor strength after anterior cruciate ligament
reconstruction: a detailed evaluation with comparison
of single- and double-tendon harvest. Am J Sports
Med. 2003; 31(4):522-9.
29. Adachi N, Ochi M, Uchio Y, Sakai Y, Kuriwaka M,
Fujihara A. Harvesting hamstring tendons for ACL
reconstruction influences postoperative hamstring
muscle performance. Arch Orthop Trauma Surg.
2003; 123(9):460-5.
30. Tashiro T, Kurosawa H, Kawakami A, Hikita A, Fukui
N. Influence of medial hamstring tendon harvest on
knee flexor strength after anterior cruciate ligament
reconstruction. Am J Sports Med. 2003; 31(4):522-9.
31. Natri A, Jarvinen M, Latvala K, Kannus P. Isokinetic
muscle performance after anterior cruciate ligament
surgery. Long-term results and outcome predicting
factors after primary surgery and late-phase
reconstruction. Int J Sports Med. 1996; 17(3):223-8.
32. Hiemstra LA, Gofton WT, Kriellaars DJ. Hip strength
following hamstring tendon anterior cruciate ligament
reconstruction. Clin J Sport Med. 2005; 15(3):180-2.
33. Froster MC, Froster IW. Patellar tendon or fourstrand
hamstring? A systematic review of autografts
for anterior cruciate ligament reconstruction. Knee.
2005; 12(3):225-30.
34. Dauty M, Tortellier L, Rochcongar P. Isokinetic and
anterior cruciate reconstruction hamstring or patellar
tendon graft: analysis of literature. Int J Sports Med.
2005; 26(7):500-606.
35. Yatsuda K, Tsujinno J, Ohkushi Y, Tanabe Y, Kaneda K.
Graft site morbidity with autogenous semitendinosus
and gracilis tendons. Am J Sports Med. 1995;
23(6):706-14.