The Outcome of Proximal Humeral Locking Plates in the Management of Three and Four Part Proximal Humeral Fractures in Special Cohort of Young Patients in High Velocity Trauma

Alphonse Mariadoss, Mch; Jignesh Thacker, DNB; Krishnanunni Gopikrishnan, DNB; Munis Ashraf, MBBS; Sakhivel Annamalai, MS; Senthil Sambandam, MS

Research performed at KG Hospital and Post Graduate Medical Institute, Coimbatore, Tamil Nadu, India

Received: 5 September 2016 Accepted: 16 October 2017

Abstract

Background: Locking plate fixation provides satisfactory outcome following proximal humerus fractures. None of the previous studies selectively evaluate the outcome in young patients. This study evaluates outcome of locking plate system in the treatment of acute three- and four-part fractures in young patients.

Methods: In this prospective study we included all patients who were less than 60 years, involved in high velocity trauma, had proximal humerus comminuted three part and four part fractures and were operated using locking plate at our centre, between August 2011 to August 2015. All the patients were followed up regularly. Assessment was done clinically using Constant and Murley scoring system and radiologically using signs of healing in the form of callus formation and cortical continuity.

Results: Twenty-five eligible patients were operated during the study period. All patients were involved in motor vehicle collision. Average age of our patients was 41.2. The average duration of follow-up was 18.2 months (8 months to 27 months). 24 out of 25 fractures united clinically and radiologically at three months’ follow-up. Average Constant and Murley score at final follow-up was 78.52. The results were excellent to good in 15 patients, fair in five patients and poor in five patients. Overall complication rate was 24%. Majority of them (20%) were restriction of movements of shoulders. None of our patients needed reoperation.

Conclusion: Locking plate system, in three part and four part proximal humerus fractures in young patients, provides secure and stable fracture fixation for early mobilization. Early results with locking plate system were promising in younger patients. In these patients, locking plate system has definite role to preserve the humeral head and thereby maintain the functional activity level.

Level of evidence: III

Keywords: Locking plate, Proximal humerus fractures, Shoulder, Young patients

Introduction

Fractures of the proximal humerus are common and debilitating injuries and have bimodal age distribution. In old patients it is often due to low energy injury (1, 2). However, in young patients proximal humerus fracture is often due to high energy trauma and is associated with severe comminution (3). Complications following proximal humerus fracture and management can be broadly classified as ones due to the fracture itself and ones due to the management options. Complications like stiffness, avascular necrosis...
and secondary osteoarthritis are often related to the severity of the fracture. Complications like malunion, implant failure and non-union are often related to the treatment option chosen (4-10). Proponents of locking plate fixation often cite better fixation, early mobilization, head preservation, restoration of range of motion and satisfactory function as some of the major advantages of locking plate construct. Proponents of prosthetic replacement often quote predictability in terms of pain relief as the major advantage but prosthetic replacement often fails to provide necessary function, stability and range of motion in young active patients and hence not a suitable option in this group of patients.

Various authors have reported their experience with locking plate in the management of proximal humerus fractures. But most of these reports fail to selectively evaluate the outcome in the difficult cohort of young patient with comminuted three part and four part proximal humerus fracture. In this prospective study we tried to evaluate the merits and demerits of proximal humeral locking plate system in the treatment of acutely displaced three- and four-part fractures of the proximal humerus in young age group with high velocity trauma.

Materials and Methods

This prospective longitudinal study was conducted at a tertiary care centre in Tamilnadu, India. Inclusion criteria is summarized in table 1. Undisplaced fractures, two- part fractures, pediatric patients, pathological fractures, low velocity injuries and patients with age more than 60 years were excluded.

An institutional review board approval was obtained for this prospective study. A standardized pathway was utilized in the management of these patient perioperatively. Data was collected prospectively. Data regarding demographics of the patients, mode of injury, physical examination findings, Xrays (antero posterior and axillary radiographs) and CT scans were collected and documented. Preoperative radiographs were classified using the Neer’s classification system to grade the fractures (11). All patients were taken up for surgery after optimization of medical conditions as appropriate. All surgeries were performed by the same trauma team involving two senior orthopaedic surgeons. A general anaesthesia was used in all patients. Deltopectoral approach was used in all patients. The fracture fragments were first reduced and fixed provisionally with k-wires. Plate positioned laterally and provisionally secured to the head with k-wires and then plate fixed with appropriate size screws. The whole procedure was monitored under image intensifier control. Rotator cuff was repaired. The stability of fracture fixation was tested before wound was closed with drains. Post operatively intravenous antibiotics was given for 48 hours and wound checked on second post-operative day. Routine postoperative radiographs were obtained in all patients before discharge. Follow-up radiographs were also obtained at one month, three months and at six months on all patients. Standardized rehabilitation protocol was implemented in all patients and pendular movements were started from the second post-operative day. Active assisted exercises were started after 10 days and active exercises were started at four weeks. All the patients were followed up regularly once in a month for first three months, once in three months for next six months and once in six months thereafter.

Assessment of shoulder function was done using Constant and Murley scoring system (3) at three months, six months, one year and at final follow-up [Table 2]. Radiological signs of healing in the form of callus formation and cortical continuity were assessed in the three months and six months’follow-up radiographs. Radiographs were also used to check for complications including implant failure, secondary screw penetration and avascular necrosis.

Compliance with Ethical Standards

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Results

Twenty-five eligible patients were operated during the study period from August 2011 to August 2015. Out of twenty-five, 18 were males and 7 were females. All patients were involved in a motor vehicle collision. Average age of our patient was 41.2 [Figure 1]. The average duration of follow-up was 18.2 months.
(Range: 8-27 months). There were 15 (60%) three-part fractures and 10 (40%) four-part fractures [Figure 2]. One patient with three-part fracture had associated shoulder dislocation. All fractures were of closed types. 24 out of 25 fractures united clinically and radiologically at three months’ follow-up. One delayed union occurred in the patient with three-part fracture dislocation which eventually united at the end of 20 weeks. Average Constant and Murley score at final follow-up was 78.52 [Figure 3].

Average score for patients with three part fracture was 82.40 and average score for four part fracture was 72.70. The results were excellent to good in 15 patients, fair in five patients and poor in five patients [Figure 4]. Overall complication rate in our study was 24%. Majority of them, five patients (20%), were restriction of movements of shoulders. Three out of five patients had functional range of motion not requiring any additional procedures. Remaining two patients were
offered surgical management but patients refused because of overall satisfactory pain relief and function. Other complications noted were osteonecrosis in one patient, delayed union in one patient, painful impingement in one patient. None of our patients needed reoperation for loss of reduction, primary or secondary screw penetration or soft tissue complications. Patient with radiological evidence of osteonecrosis had good functional outcome and hence he elected to continue with non-operative care.

Discussion

Fractures of the proximal humerus were first described by Hippocrates way back in 420 B.C. In 1970, Neer classified proximal humerus fractures based on number of fracture fragments that are displaced (11). AO/OTA group came with an alternative classification based on the location of fracture and the status of the surgical neck of humerus which reflect the blood supply to the humeral head (12).

Majority of patients, 80 – 90%, with proximal humerus fractures can be managed conservatively without surgery. Most of these fractures are minimally displaced ones and had high union rates (13).

Closed reduction and percutaneous fixation is mainly indicated for two part fractures and some minimally displaced three part fractures. Some studies have reported good results with closed reduction and percutaneous fixation. This procedure is technically demanding and has a substantial learning curve (14, 15).

Biomechanical studies comparing locking plates versus non locking plates for open reduction and internal fixation of displaced proximal humerus fractures reported many biomechanical advantages, increased torsional and pull out strength, and less complication rate to locking plates as compared to non-locking plates (16, 17). Proponents of locking plate fixation often cite better fixation, early mobilization, head preservation, restoration of range of motion and satisfactory function as some of the major advantages of locking plate construct (18-25). Details of the selected hallmark studies of locking plate fixation for proximal humeral fractures are compiled in Table 3. In a negatively selected case series by Jost et al complications occurred were malreduction, primary screw cutout, malunion, nonunion, avascular necrosis, and infection (26).

The outcome of the intramedullary nailing for the treatment of proximal humerus fractures was quite unpredictable. The choice of site of entry can be difficult and it may cause lateral metaphyseal comminution (27).

Immediate stability and pain relief was mentioned offered surgical management but patients refused because of overall satisfactory pain relief and function. Other complications noted were osteonecrosis in one patient, delayed union in one patient, painful impingement in one patient. None of our patients needed reoperation for loss of reduction, primary or secondary screw penetration or soft tissue complications. Patient with radiological evidence of osteonecrosis had good functional outcome and hence he elected to continue with non-operative care.

Discussion

Fractures of the proximal humerus were first described by Hippocrates way back in 420 B.C. In 1970, Neer classified proximal humerus fractures based on number of fracture fragments that are displaced (11). AO/OTA group came with an alternative classification based on the location of fracture and the status of the surgical neck of humerus which reflect the blood supply to the humeral head (12).

Majority of patients, 80 – 90%, with proximal humerus fractures can be managed conservatively without surgery. Most of these fractures are minimally displaced ones and had high union rates (13).

Closed reduction and percutaneous fixation is mainly indicated for two part fractures and some minimally displaced three part fractures. Some studies have reported good results with closed reduction and percutaneous fixation. This procedure is technically demanding and has a substantial learning curve (14, 15).

Biomechanical studies comparing locking plates versus non locking plates for open reduction and internal fixation of displaced proximal humerus fractures reported many biomechanical advantages, increased torsional and pull out strength, and less complication rate to locking plates as compared to non-locking plates (16, 17). Proponents of locking plate fixation often cite better fixation, early mobilization, head preservation, restoration of range of motion and satisfactory function as some of the major advantages of locking plate construct (18-25). Details of the selected hallmark studies of locking plate fixation for proximal humeral fractures are compiled in Table 3. In a negatively selected case series by Jost et al complications occurred were malreduction, primary screw cutout, malunion, nonunion, avascular necrosis, and infection (26).

The outcome of the intramedullary nailing for the treatment of proximal humerus fractures was quite unpredictable. The choice of site of entry can be difficult and it may cause lateral metaphyseal comminution (27).

Immediate stability and pain relief was mentioned.

Table 3. Selected studies on proximal humeral locking plate

<table>
<thead>
<tr>
<th>Author</th>
<th>Published year</th>
<th>No. Of cases</th>
<th>Type of fracture</th>
<th>Mean Age</th>
<th>Outcome Constant and Murley scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjorkenheim et al</td>
<td>2004</td>
<td>72</td>
<td>Two part three part and Four part</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td>Koukakis et al</td>
<td>2006</td>
<td>20</td>
<td>Two part three part and Four part</td>
<td>71</td>
<td>76.1</td>
</tr>
<tr>
<td>P. Moonot et al</td>
<td>2007</td>
<td>32</td>
<td>Three part and Four part</td>
<td>60</td>
<td>66.5</td>
</tr>
<tr>
<td>Thanasas C et al</td>
<td>2009</td>
<td>Systematic review of 791 patients</td>
<td>Three part and Four part</td>
<td>NA</td>
<td>74.3</td>
</tr>
<tr>
<td>P Clavert et al</td>
<td>2010</td>
<td>73</td>
<td>Three part and Four part</td>
<td>65</td>
<td>62.3</td>
</tr>
<tr>
<td>Olerud P et al</td>
<td>2011</td>
<td>60</td>
<td>Unstable Three part</td>
<td>74</td>
<td>61</td>
</tr>
<tr>
<td>Konigshausen et al</td>
<td>2013</td>
<td>73</td>
<td>Three part and Four part</td>
<td>69.9</td>
<td>66.6</td>
</tr>
<tr>
<td>Chodavarapu LM et al</td>
<td>2016</td>
<td>30</td>
<td>Two part three part and Four part</td>
<td>40.4</td>
<td>76</td>
</tr>
</tbody>
</table>
as the benefits of shoulder hemiarthroplasty. But the unpredictable functional outcome and associated complications like tuberosity nonunion, heterotopic ossification, proximal migration of prosthesis, infection, nerve injuries and glenoid wear and tear make the surgery limited to particular indications only (11, 28, 29). Reverse shoulder arthroplasty reported comparable functional outcomes to other surgical techniques. Firm conclusions cannot be drawn until both longer follow up is available and randomized controlled trials compare this modality against other primary treatments (30-32).

Overall, surgeons reporting the outcome following proximal humeral locking plate fixation for proximal humerus fracture is very limited with isolated case reports in mixed group of patients. We think that the trauma surgeons utilizing this implant in considerable volume should continue to report their findings in different age groups of patients. We studied the outcome of locking plate fixation in three part and four part proximal humerus fractures in patients aged less than 60 years, with an average age 41.2 years. Various authors have reported their experience with locking plate in the management of proximal humerus fractures in elderly patients (18-26). However, most studies are isolated case series with majority of patients having osteoporotic proximal humerus fracture. In contrast, in this prospective study, we tried to evaluate the merits and demerits of Proximal Humeral locking plate system in the treatment of acutely displaced three- and four-part fractures of the proximal humerus in young age group with high velocity trauma.

Our study of patients with three- and four- part proximal humerus fractures, treated with proximal humeral locking plate system is compared with the study by Moonot et al. (21) which treated only three- and four-part proximal humerus fractures, in which 32 patients were treated by open reduction and internal fixation with locking plate system (Table 4).

Table 4. comparison of our study versus moonot et al study

<table>
<thead>
<tr>
<th>Table 4. comparison of our study versus moonot et al study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our study</td>
</tr>
<tr>
<td>Type of fracture</td>
</tr>
<tr>
<td>No. of cases</td>
</tr>
<tr>
<td>Three part (15)</td>
</tr>
<tr>
<td>Four part (10)</td>
</tr>
<tr>
<td>Mode of injury</td>
</tr>
<tr>
<td>Motor vehicle collision (25)</td>
</tr>
<tr>
<td>Fall from staircase (3)</td>
</tr>
<tr>
<td>Type of fracture</td>
</tr>
<tr>
<td>Outcome At 3 months follow up</td>
</tr>
<tr>
<td>Delayed union</td>
</tr>
<tr>
<td>Non union</td>
</tr>
<tr>
<td>Malunion</td>
</tr>
<tr>
<td>Infection</td>
</tr>
<tr>
<td>Impingement</td>
</tr>
<tr>
<td>Re operation for impingement</td>
</tr>
<tr>
<td>Avascular necrosis</td>
</tr>
<tr>
<td>Screw breakage</td>
</tr>
<tr>
<td>Frozen shoulder</td>
</tr>
<tr>
<td>Mean age group</td>
</tr>
<tr>
<td>Average Constant and Murley score</td>
</tr>
<tr>
<td>66.5</td>
</tr>
</tbody>
</table>

In our study, average Constant and Murley score at final follow-up was 78.52. Average score for patients with three-part fracture was 82.40 and average score for four-part fracture was 72.70. The results were excellent to good in 15 patients (60%), fair in five (20%) patients and poor in five (20%) patients. In Moonot et al study, 15 (47%) patients had excellent results, 12(37%)
patients had satisfactory and five (16%) patients had poor results. The mean Constant score in this study was 66.5. The better outcome and less complication rate in our study as compared to the study done by Moonot et al was attributed to the young age and good bone quality of our study population. In Moonot et al study a total of 18 (56%) patients were aged more, and 14 (44%) less than 60 years with mean age of 59.9 years. The youngest patient age was 18 years' age and oldest patient age was 87 years.

Early results with locking plate system were promising in young patients. In young patients with complex three
and four-part fracture, proximal humeral locking plate system has definite role to preserve the humeral head and there by maintain the functional activity level.

Proximal humeral locking plate system in three part and four part fractures in young peoples, provides secure and stable fracture fixation for early mobilization. Early results with proximal humeral locking plate system were promising in younger patients. In these patients, locking plate system has definite role to preserve the humeral head and there by maintain the functional activity level.

"The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper."

Limitations

The limitations in our study include a small sample size, a single mode of injury (accident) and fracture fixation methods (only locking plate was described). The small sample size in our study has an impact on the analysis of outcomes, as it can overestimate the results. Furthermore, the study involves fracture fixation with locking plate alone and other fixation methods could have also been used for comparison of various fixation methods in proximal humerus fractures.

Alphonse Mariadoss Mch
Jignesh Thacker DNB
Krishnanunni Gopikrishnan DNB
Munis Ashraf MBBS
Sakthivel Annamalai MS
Senthil Sambandam MS
KG Hospital and Post Graduate Medical Institute, Coimbatore, Tamil nadu, India

References

2007; 22(2):176-82.